Skip to main content
U.S. flag

An official website of the United States government

Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary

January 1, 1988

Perhaps the most significant event in the Cretaceous record of the carbon isotope composition of carbonate1,2, other than the 1-2.5??? negative shift in the carbon isotope composition of calcareous plankton at the Cretaceous/Tertiary boundary3, is the rapid global positive excursion of ???2??? (13C enrichment) which took place between ???91.5 Myr and 90.3 Myr (late Cenomanian to earliest Turonian (C/T boundary event))1,4,5. This excursion has been attributed to a change in the isotope composition of the marine total dissolved carbon (TDC) reservoir resulting from an increase in rate of burial of 13C-depleted organic carbon, which coincided with a major global rise in sea level5 during the so-called C/T oceanic anoxic event (OAE)6. Here we present new data, from nine localities, which demonstrate that a positive excursion in the carbon isotope composition of organic carbon at or near the C/T boundary7,8 is nearly synchronous with that for carbonate and is widespread throughout the Tethys and Atlantic basins (Fig. 1), as well as in more high-latitude epicontinental seas. The postulated increase in the rate of burial of organic carbon may have had a significant effect on CO2 and O2 concentrations in the oceans and atmosphere, and consequent effects on global climate and sedimentary facies. ?? 1988 Nature Publishing Group.

Publication Year 1988
Title Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary
Authors M.A. Arthur, W.E. Dean, L.M. Pratt
Publication Type Article
Publication Subtype Journal Article
Series Title Nature
Index ID 70014424
Record Source USGS Publications Warehouse