Skip to main content
U.S. flag

An official website of the United States government

Geohydrology and numerical simulation of groundwater flow in the central Virgin River Basin of Iron and Washington Counties, Utah

November 1, 2000

Because rapid growth of communities in Washington and Iron Counties, Utah, is expected to cause an increase in the future demand for water resources, a hydrologic investigation was done to better understand ground-water resources within the central Virgin River basin. This study focused on two of the principal ground-water reservoirs within the basin: the upper Ash Creek basin ground-water system and the Navajo and Kayenta aquifer system.

The ground-water system of the upper Ash Creek drainage basin consists of three aquifers: the uppermost Quaternary basin-fill aquifer, the Tertiary alluvial-fan aquifer, and the Tertiary Pine Valley monzonite aquifer. These aquifers are naturally bounded by the Hurricane Fault and by drainage divides. On the basis of measurements, estimates, and numerical simulations of reasonable values for all inflow and outflow components, total water moving through the upper Ash Creek drainage basin ground-water system is estimated to be about 14,000 acre-feet per year. Recharge to the upper Ash Creek drainage basin ground-water system is mostly from infiltration of precipitation and seepage from ephemeral and perennial streams. The primary source of discharge is assumed to be evapotranspiration; however, subsurface discharge near Ash Creek Reservoir also may be important.

The character of two of the hydrologic boundaries of the upper Ash Creek drainage basin ground-water system is speculative. The eastern boundary provided by the Hurricane Fault is assumed to be a no-flow boundary, and a substantial part of the ground-water discharge from the system is assumed to be subsurface outflow beneath Ash Creek Reservoir along the southern boundary. However, these assumptions might be incorrect because alternative numerical simulations that used different boundary conditions also proved to be feasible. The hydrogeologic character of the aquifers is uncertain because of limited data. Differences in well yield indicate that there is considerable variability in the transmissivity of the basin-fill aquifer. Field data also indicate that the basin-fill aquifer is more transmissive than the underlying alluvial-fan aquifer. Data from the Pine Valley monzonite aquifer indicate that its transmissivity may be highly variable and that it is strongly influenced by the connection of fractures.

The Navajo and Kayenta aquifers provide most of the potable water to the municipalities of Washington County. Because of large outcrop exposures, uniform grain size, and large stratigraphic thickness, these formations are able to receive and store large amounts of water. In addition, structural forces have resulted in extensive fracture zones that enhance ground-water recharge and movement within these aquifers. Aquifer testing of the Navajo aquifer indicates that horizontal hydraulic-conductivity values range from 0.2 to 32 feet per day at different locations and may be primarily dependent on the extent of fracturing. Limited data indicate that the Kayenta aquifer generally is less transmissive than the Navajo aquifer. The aquifers are bounded to the south and west by the erosional extent of the formations and to the east by the Hurricane Fault, which completely offsets these formations and is assumed to be a lateral no-flow boundary. Like the Hurricane Fault, the Gunlock Fault is assumed to be a lateral no-flow boundary that divides the Navajo and Kayenta aquifers within the study area into two parts: the main part, between the Hurricane and Gunlock Faults; and the Gunlock part, west of the Gunlock Fault.

Generally, the water in the Navajo and Kayenta aquifers contains few dissolved minerals. However, two distinct areas contain water with dissolved-solids concentrations greater than 500 milligrams per liter: a larger area north of the city of St. George and a smaller area a few miles west of the town of Hurricane. Mass-balance calculations indicate that in the higher-dissolved-solids area north of St. George, as much as 2.7 cubic feet per second may be entering the aquifer from underlying formations. For the area west of Hurricane, as much as 1.5 cubic feet per second may be entering the aquifer from underlying formations.

On the basis of measurements, estimates, and numerical simulations, total water moving through the Navajo and Kayenta aquifers is estimated to be about 25,000 acre-feet per year for the main part and 5,000 acre-feet per year for the Gunlock part. The primary source of recharge is assumed to be infiltration of precipitation in the main part and seepage from the Santa Clara River in the Gunlock part. The primary source of discharge is assumed to be well discharge for both the main and Gunlock parts of the aquifers. Numerical simulations indicate that faults with major offset, such as the Washington Hollow Fault and an unnamed fault near Anderson Junction, may impede horizontal ground-water flow. Also, increased horizontal hydraulic conductivity along the orientation of predominant surface fracturing may be an important factor in regional ground-water flow. Simulations with increased north-south hydraulic conductivity substantially improved the match to measured water levels in the central area of the model between Snow Canyon and Mill Creek. Numerical simulation of the Gunlock part, using aquifer properties determined for the city of St. George municipal well field, resulted in a reasonable representation of regional water levels and estimated seepage from and to the Santa Clara River. To further quantify the Gunlock part of the Navajo and Kayenta aquifers, a better understanding of ground-water flow at the Gunlock Fault is needed.

Publication Year 2000
Title Geohydrology and numerical simulation of groundwater flow in the central Virgin River Basin of Iron and Washington Counties, Utah
Authors V.M. Heilweil, G. W. Freethey, C.D. Wilkowske, Bernard J. Stolp, Dale E. Wilberg
Publication Type Report
Publication Subtype Other Government Series
Series Title Technical Publication
Series Number 116
Index ID 70179116
Record Source USGS Publications Warehouse
USGS Organization Utah Water Science Center
Was this page helpful?