Geohydrology, water quality, and estimation of ground-water recharge in San Francisco, California, 1987-92
January 1, 1993
The city of San Francisco is considering further development of local groundwater resources as a supplemental source of water for potable or nonpotable use. By the year 2010, further water demand is projected to exceed the delivery capacity of the existing supply system, which is fed by surface-water sources; thus supplies are susceptible to drought conditions and damage to conveyance lines by earthquakes. The primary purpose of this study is to describe local geohydrology and water quality and to estimate groundwater recharge in the area of the city of San Francisco. Seven groundwater basins were identified in San Francisco on the basis of geologic and geophysical data. Basins on the east side of the city are relatively thin and contain a greater percentage of fine-grained sediments than those on the west side. The relatively small capacity of the basins and greater potential for contamination from sewer sources may limit the potential for groundwater development on the east side. Basins on the west side of the city have a relatively large capacity and low density sewer network. Water-level data indicate that the southern part of the largest basin on the west side of the city (Westside basin) probably cannot accommodate additional groundwater development without adversely affecting water levels and water quality in Lake Merced; however, the remainder of the basin, which is largely undeveloped, could be developed further. A hydrologic routing model was developed for estimating groundwater recharge throughout San Francisco. The model takes into account climatic factors, land and water use, irrigation, leakage from underground pipes, rainfall runoff, evapotranspiration, and other factors associated with an urban environment. Results indicate that area recharge rates for water years 1987-88 for the 7 groundwater basins ranged from 0.32 to 0.78 feet per year. Recharge for the Westside basin was estimated at 0.51 feet per year. Average annual groundwater recharge represents the maximum annual long-term yield of the basin. Attainable yield may be less than the volume of groundwater recharge because interception of all discharge from the basin may not be feasible without inducing seawater intrusion or causing other undesirable effects.
Citation Information
Publication Year | 1993 |
---|---|
Title | Geohydrology, water quality, and estimation of ground-water recharge in San Francisco, California, 1987-92 |
DOI | 10.3133/wri934019 |
Authors | S.P. Phillips, S. N. Hamlin, E.B. Yates |
Publication Type | Report |
Publication Subtype | USGS Numbered Series |
Series Title | Water-Resources Investigations Report |
Series Number | 93-4019 |
Index ID | wri934019 |
Record Source | USGS Publications Warehouse |