Geospatial scaling of runoff and erosion modeling in the Chihuahuan Desert
Large-scale assessments of rangeland runoff and erosion require methods to extend plot-scale parameterizations to large areas. In this study, Rangeland Hydrology and Erosion Model (RHEM) parameters were developed from plot-scale foliar and ground-cover transect data for an arid, grass-shrub rangeland in southern New Mexico, and a method was assessed to upscale transect-plot parameters to a large landscape. The transect-plot data compared favorably to corresponding cell data generated from publicly available geospatial data for total foliar cover but less favorably for litter cover and poorly for rock cover. The RHEM effective hydraulic conductivity (Ke) parameter was comparable between transect-plot and geospatial-cell methods, but the splash and sheet erosion factor (Kss) had poor agreement between the two methods. Simulated runoff and erosion reflected differences in transect-plot and geospatial-cell-based RHEM parameterizations, with low error and very good agreement for runoff but high error and poor agreement for soil loss. These results demonstrate that Ke parameters developed using geospatial data calibrated to plot data can be extrapolated to large spatial areas and provide reasonable simulation of runoff using RHEM. However, these same geospatial methods do not provide reasonable estimation of Kss or simulation of soil loss. Poor representation of litter and rock cover variables, which are highly spatially heterogeneous at the plot scale, was inadequate to accurately represent Kss or soil loss using RHEM. High resolution ground cover data, such as from unmanned aerial systems, may improve parameterization of Kss, and, ultimately, arid rangeland soil erosion simulation.
Citation Information
Publication Year | 2019 |
---|---|
Title | Geospatial scaling of runoff and erosion modeling in the Chihuahuan Desert |
DOI | 10.13031/aea.13275 |
Authors | Grady Ball, Kyle R. Douglas-Mankin |
Publication Type | Article |
Publication Subtype | Journal Article |
Series Title | Applied Engineering in Agriculture |
Index ID | 70206737 |
Record Source | USGS Publications Warehouse |
USGS Organization | New Mexico Water Science Center |