Skip to main content
U.S. flag

An official website of the United States government

Ground-water hydrology, historical water use, and simulated ground-water flow in Cretaceous-age Coastal Plain aquifers near Charleston and Florence, South Carolina

January 1, 1996

A quasi-three-dimensional, transient, digital, ground-water flow model representing the Coastal Plain aquifers of South Carolina, has been constructed to assist in defining the ground- water-flow system of Cretaceous aquifers near Charleston and Florence, S.C. Both cities are near the centers of large (greater than 150 feet) potentiometric declines in the Middendorf aquifer. In 1989, the diameter of the depressions was approximately 40 miles at Charleston and 15 miles at Florence. The potentiometric decline occurred between predevelopment (1926) and 1982 near Florence, and between predevelopment (1879) and 1989 near Charleston. The city of Charleston does not withdraw water from these aquifers; however, some of the small communities in the area use these aquifers for a potable water supply. The model simulates flow in and between four aquifer systems. The model has a variable-cell-size grid, and spans the Coastal Plain from the Savannah River in the southwest to the Cape Fear Arch in the northeast, and from the Fall Line in the northwest to approximately 30 miles offshore to the southeast. Model-grid cell size is 1 by 1 mile in a 48 by 48 mile area centered in Charleston, and in a 36 by 48 mile area centered in Florence. The model cell size gradually increases to a maximum of 4 by 4 miles outside the two study areas. The entire grid consists of 115 by 127 cells and covers an area of 39,936 square miles. The model was calibrated to historical water-level data. The calibration relied on three techniques: (1) matching simulated and observed potentiometric map surfaces, (2) statistical comparison of observed and simulated heads, and (3) comparison of observed and simulated well hydrographs. Systematic changes in model parameters showed that simulated heads are most sensitive to changes in aquifer transmissivity. Eight predictive ground-water-use scenarios were simulated for the Mount Pleasant area, which presently (1993) uses the Middendorf aquifer as a sole-source of potable water. These simulations use various combinations of spatial distribution, and injection of treated wastewater effluent for existing and future Middendorf aquifer wells.

Publication Year 1996
Title Ground-water hydrology, historical water use, and simulated ground-water flow in Cretaceous-age Coastal Plain aquifers near Charleston and Florence, South Carolina
DOI 10.3133/wri964050
Authors B. G. Campbell, Marijke van Heeswijk
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Water-Resources Investigations Report
Series Number 96-4050
Index ID wri964050
Record Source USGS Publications Warehouse
USGS Organization South Atlantic Water Science Center