Skip to main content
U.S. flag

An official website of the United States government

Hydrogeologic framework and simulation of shallow ground-water flow in the vicinity of a hazardous-waste landfill near Pinewood, South Carolina

January 1, 1994

The geologic units in the vicinity of a hazardous- waste landfill near Pinewood, S.C., were divided into hydrogeologic units on the basis of lithologic and hydrologic characteristics. A quasi-3- dimensional finite-difference ground-water-flow model was constructed to represent the hydrogeologic flamework. The simulation results indicate that if non-reactive constituents were released to the Lang Syne water-bearing zone underlying the central and western pans of the disposal area, the constituents would move in a southwesterly direction at a rate of about one-half to 7 feet per year. Contaminants could move from the Lang Syne water-bearing zone upward to the surficial aquifer, to streams, or to Lake Marion. Although these flow rates indicate that it would require at least 50 years for contaminants to travel between the disposal area and a nearby (400 ft) potential discharge area, the heterogeneity of the site hydrogeology imparts an uncertainty to the conclusion. Faster travel times cannot be ruled out if contamination enters an area having a higher hydraulic conductivity than those determined in this investigation. Faster arrival times at Lake Marion also could result if there are pathways shorter than about 400 feet between contaminated water and an area where it can discharge to the surficial aquifer or to streams. If contaminant releases were to occur on the eastern side of the ground-water mounds, near landfill section II and the southeastern part of land fill section I, initial flow directions would be toward the water-level depression in the eastern part of the facility. Ground water within water- level depression would flow downward, probably to the underlying lower Sawdust Landing water-beating zone. Movement of non-reactive constituents in the tower Sawdust Landing water-bearing zone would be southwestward toward Lake Marion at a rate of about 8 to 20 feet per year. Transport to the lake by this route could require more than 200 years.

Publication Year 1994
Title Hydrogeologic framework and simulation of shallow ground-water flow in the vicinity of a hazardous-waste landfill near Pinewood, South Carolina
DOI 10.3133/wri934185
Authors D. A. Vroblesky
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Water-Resources Investigations Report
Series Number 93-4185
Index ID wri934185
Record Source USGS Publications Warehouse
USGS Organization South Atlantic Water Science Center