Skip to main content
U.S. flag

An official website of the United States government

Hydrogeologic framework, ground-water quality, and simulation of ground-water flow at the Fair Lawn Well Field Superfund site, Bergen County, New Jersey

July 15, 2005

Production wells in the Westmoreland well field, Fair Lawn, Bergen County, New Jersey (the 'Fair Lawn well field Superfund site'), are contaminated with volatile organic compounds, particularly trichloroethylene, tetrachloroethylene, and 1,1,1-trichloroethane. In 1983, the U.S. Environmental Protection Agency (USEPA) placed the Westmoreland well field on its National Priority List of Superfund sites. In an effort to determine ground-water flow directions, contaminant-plume boundaries, and contributing areas to production wells in Fair Lawn, and to evaluate the effect of present pump-and-treat systems on flowpaths of contaminated ground water, the U.S. Geological Survey (USGS), in cooperation with the USEPA, developed a conceptual hydrogeologic framework and ground-water flow model of the study area. MODFLOW-2000, the USGS three-dimensional finite-difference model, was used to delineate contributing areas to production wells in Fair Lawn and to compute flowpaths of contaminated ground water from three potential contaminant sources to the Westmoreland well field. Straddle-packer tests were used to determine the hydrologic framework of, distribution of contaminants in, and hydrologic properties of water-bearing and confining units that make up the fractured-rock aquifer underlying the study area.

The study area consists of about 15 square miles in and near Fair Lawn. The area is underlain by 6 to 100 feet of glacial deposits and alluvium that, in turn, are underlain by the Passaic Formation. In the study area, the Passaic Formation consists of brownish-red pebble conglomerate, medium- to coarse-grained feldspathic sandstone, and micaceous siltstone. The bedrock strata strike N. 9o E. and dip 6.5o to the northwest. The bedrock consists of alternating layers of densely fractured rocks and sparsely fractured rocks, forming a fractured-rock aquifer.

Ground-water flow in the fractured-rock aquifer is anisotropic as a result of the interlayering of dipping water-bearing and confining units. Wells of similar depth aligned along the strike of the bedding intersect the same water-bearing units, but wells aligned along the dip of the bedding may intersect different water-bearing units. Consequently, wells aligned along strike are in greater hydraulic connection than wells aligned along dip.

The Borough of Fair Lawn pumps approximately 770 million gallons per year from 13 production wells. Hydrographs from six observation wells ranging in depth from 162 to 505 feet in Fair Lawn show that water levels in much of the study area are affected by pumping.

Straddle packers were used to isolate discrete intervals within six open-hole observation wells owned by the Fair Lawn Water Department. Transmissivity, water-quality, and static-water-level data were obtained from the isolated intervals. Measured transmissivity ranged from near 0 to 8,900 feet squared per day. The broad range in measured transmissivity is a result of the heterogeneity of the fractured-rock aquifer.

Eight water-bearing units and eight confining units were identified in the study area on the basis of transmissivity. The water-bearing units range in thickness from 21 to 95 feet; the mean thickness is 50 feet. The confining units range in thickness from 22 to 248 feet; the mean thickness is 83 feet. Water-level and water-quality data indicate effective separation of water-bearing units by the confining units.

Water-quality samples were collected from the six observation wells at 16 depth intervals isolated by the straddle packers in 2000 and 2001. Concentrations of volatile organic compounds generally were low in samples from four of the wells, but were higher in samples from a well in Fair Lawn Industrial Park and in a well in the Westmoreland well field.

The digital ground-water flow model was used to simulate steady-state scenarios representing conditions in the study area in 1991 and 2000. These years were chosen because during the intervening period,

Related Content