Skip to main content
U.S. flag

An official website of the United States government

Key sources of uncertainty in QUAL2E model of passaic river

January 1, 1996

Application of stream water-quality models in decision making has been hampered by a lack of data appropriate for minimization of model-simulation uncertainty. A method for determining data needed to reduce model-prediction uncertainty is illustrated in this paper. First-order reliability analysis is applied to determine (1) the model parameters that significantly affect model-prediction uncertainty; and (2) the constituents for which model-prediction uncertainty is unacceptable. Additional data are required to reduce uncertainty in the parameters that significantly affect constituents with high prediction uncertainty and consequently in model prediction. The method is demonstrated for multiconstituent water-quality modeling on the Passaic River in New Jersey applying QUAL2E. The model-prediction uncertainty of dissolved oxygen, biochemical oxygen demand, ammonia, and chlorphyll a is considered. For this example, only the reaeration rate and the algal maximum-specific-growth rate contribute significant uncertainty to model prediction. The effect of reducing the uncertainty in the reaeration rate and algal maximum-specific-growth rate on the uncertainty on predicted dissolved oxygen and chlorphyll a, respectively, is demonstrated.

Citation Information

Publication Year 1996
Title Key sources of uncertainty in QUAL2E model of passaic river
Authors Charles S. Melching, C.G. Yoon
Publication Type Article
Publication Subtype Journal Article
Series Title Journal of Water Resources Planning and Management
Index ID 70018521
Record Source USGS Publications Warehouse