Skip to main content
U.S. flag

An official website of the United States government

Level II scour analysis for Bridge 17 (NEWHTH00200017) on Town Highway 20, crossing Little Otter Creek, New Haven, Vermont

January 1, 1994

This report provides the results of a detailed Level II analysis of scour potential at structure NEWHTH00200017 on Town Highway 20 crossing Little Otter Creek, New Haven, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D.

The site is in the Champlain section of the St. Lawrence Valley physiographic province in west-central Vermont. The 10.8-mi2 drainage area is in a predominantly rural and wetland basin. In the vicinity of the study site, the surface cover is shrubland on the downstream right overbank. The surface cover of the downstream left overbank, the upstream right overbank and the upstream left overbank is wetland and pasture.

In the study area, Little Otter Creek has a meandering channel with a slope of approximately 0.0007 ft/ft, an average channel top width of 97 ft and an average bank height of 5 ft. The channel bed material ranges from silt and clay to cobble. Medium sized silt and clay is the channel material upstream of the approach cross-section and downstream of the exit cross-section. The median grain size (D50) of the silt and clay channel bed material is 1.52 mm (0.005 ft), which was used for contraction and abutment scour computations. From the approach cross-section, under the bridge, and to the exit cross-section, stone fill is the channel bed material. The median grain size (D50) of the stone fill channel bed material is 95.7 mm (0.314 ft). The stone fill median grain size was used solely for armoring computations. The geomorphic assessment at the time of the Level I and Level II site visit on June 11, 1996, indicated that the reach was stable.

The Town Highway 20 crossing of Little Otter Creek is a 32-ft-long, two-lane bridge consisting of a 28-ft steel-beam span (Vermont Agency of Transportation, written communication, December 15, 1995). The opening length of the structure parallel to the bridge face is 24.9 ft. The bridge is supported by almost vertical, concrete abutments. The channel is skewed approximately 15 degrees to the opening while the opening-skew-toroadway is zero degrees.

The scour countermeasures at the site consisted of type-1 stone fill (less than 12 inches diameter) along the left and right abutments, as well as along the upstream left and right banks. Type-2 stone fill (less than 36 inches diameter) was present along the downstream right bank. Additional details describing conditions at the site are included in the Level II Summary and appendices D and E.

Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and Davis, 1995) for the 100- and 500-year discharges. In addition, the incipient roadway-overtopping discharge was determined and analyzed as another potential worst-case scour scenario. Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows.

Contraction scour for all modelled flows ranged from 9.7 to 13.8 ft. The worst-case contraction scour occurred at the 500-year discharge. Left abutment scour ranged from 6.9 to 7.9 ft. Right abutment scour ranged from 10.5 to 11.8 ft. The worst-case left and right abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.

It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and Davis, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

Citation Information

Publication Year 1998
Title Level II scour analysis for Bridge 17 (NEWHTH00200017) on Town Highway 20, crossing Little Otter Creek, New Haven, Vermont
DOI 10.3133/ofr9815
Authors Emily C. Wild, Ronda L. Burns
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Open-File Report
Series Number 98-15
Index ID ofr9815
Record Source USGS Publications Warehouse
USGS Organization

Related Content