Skip to main content
U.S. flag

An official website of the United States government

Mechanisms and timescales of generating eruptible rhyolitic magmas at Yellowstone caldera from zircon and sanidine geochronology and geochemistry

September 14, 2015

We constrain the physical nature of the magma reservoir and the mechanisms of rhyolite generation at Yellowstone caldera via detailed characterization of zircon and sanidine crystals hosted in three rhyolites erupted during the (ca. 170 – 70 ka) Central Plateau Member eruptive episode – the most recent post-caldera magmatism at Yellowstone. We present 238U-230Th crystallization ages and trace-element compositions of the interiors and surfaces (i.e., unpolished rims) of individual zircon crystals from each rhyolite. We compare these zircon data to 238U- 230Th crystallization ages of bulk sanidine separates coupled with chemical and isotopic data from single sanidine crystals. Zircon age and trace-element data demonstrate that the magma reservoir that sourced the Central Plateau Member rhyolites was long-lived (150 – 250 kyr) and genetically related to the preceding episode of magmatism, which occurred ca. 256 ka. The interiors of most zircons in each rhyolite were inherited from unerupted material related to older stages of Central Plateau Member magmatism or the preceding late Upper Basin Member magmatism (i.e., are antecrysts). Conversely, most zircon surfaces crystallized near the time of eruption from their host liquids (i.e., are autocrystic). The repeated recycling of zircon interiors from older stages of magmatism demonstrates that sequentially erupted Central Plateau Member rhyolites are genetically related. Sanidine separates from each rhyolite yield 238U-230Th crystallization ages at or near the eruption age of their host magmas, coeval with the coexisting zircon surfaces, but are younger than the coexisting zircon interiors. Chemical and isotopic data from single sanidine crystals demonstrate that the sanidines in each rhyolite are in equilibrium with their host melts, which considered along with their near-eruption crystallization ages suggests that nearly all CPM sanidines are autocrystic. The paucity of antecrystic sanidine crystals relative to antecrystic zircons require a model where eruptible rhyolites are generated by extracting melt and zircons from a long-lived mush of immobile crystal-rich magma. In this process the larger sanidine crystals remain trapped in the locked crystal network. The extracted melts (plus antecrystic zircon) amalgamate into a liquid dominated (i.e., eruptible) magma body that is maintained as a physically distinct entity relative to the bulk of the long-lived crystal mush. Zircon surfaces and sanidines in each rhyolite crystallize after melt extraction/amalgamation and their ages constrain the residence time of eruptible magmas at Yellowstone. Residence times of the large volume rhyolites (~40 – 70 km3) are ≤ 1 kyr (conservatively < 6 kyr), which suggests that large volumes of rhyolite can be generated rapidly by extracting melt from a crystal mush. Because the lifespan of the crystal mush that sourced the Central Plateau Member rhyolites is two orders of magnitude longer than the residence time of eruptible magma bodies within the reservoir, it is apparent that the Yellowstone magma reservoir spends most of its time in a largely-crystalline (i.e., uneruptible) state, similar to the present-day magma reservoir, and that eruptible magma bodies are ephemeral features.

Publication Year 2015
Title Mechanisms and timescales of generating eruptible rhyolitic magmas at Yellowstone caldera from zircon and sanidine geochronology and geochemistry
DOI 10.1093/petrology/egv047
Authors Mark E. Stelten, Kari M. Cooper, Jorge A. Vazquez, Andrew T. Calvert, Justin G Glessner
Publication Type Article
Publication Subtype Journal Article
Series Title Journal of Petrology
Index ID 70155519
Record Source USGS Publications Warehouse
USGS Organization Volcano Science Center