Skip to main content
U.S. flag

An official website of the United States government

Methods, quality assurance, and data for assessing atmospheric deposition of pesticides in the Central Valley of California

April 11, 2013

The U.S. Geological Survey monitored atmospheric deposition of pesticides in the Central Valley of California during two studies in 2001 and 2002–04. The 2001 study sampled wet deposition (rain) and storm-drain runoff in the Modesto, California, area during the orchard dormant-spray season to examine the contribution of pesticide concentrations to storm runoff from rainfall. In the 2002–04 study, the number and extent of collection sites in the Central Valley were increased to determine the areal distribution of organophosphate insecticides and other pesticides, and also five more sample types were collected. These were dry deposition, bulk deposition, and three sample types collected from a soil box: aqueous phase in runoff, suspended sediment in runoff, and surficial-soil samples. This report provides concentration data and describes methods and quality assurance of sample collection and laboratory analysis for pesticide compounds in all samples collected from 16 sites. Each sample was analyzed for 41 currently used pesticides and 23 pesticide degradates, including oxygen analogs (oxons) of 9 organophosphate insecticides. Analytical results are presented by sample type and study period.

The median concentrations of both chloryprifos and diazinon sampled at four urban (0.067 micrograms per liter [μg/L] and 0.515 μg/L, respectively) and four agricultural sites (0.079 μg/L and 0.583 μg/L, respectively) during a January 2001 storm event in and around Modesto, Calif., were nearly identical, indicating that the overall atmospheric burden in the region appeared to be fairly similar during the sampling event. Comparisons of median concentrations in the rainfall to those in the McHenry storm-drain runoff showed that, for some compounds, rainfall contributed a substantial percentage of the concentration in the runoff; for other compounds, the concentrations in rainfall were much greater than in the runoff. For example, diazinon concentrations in rainfall were about 70 percent of the diazinon concentration in the runoff, whereas the chlorpyrifos concentration in the rain was 1.8 times greater than in the runoff. The more water-soluble pesticides—carbaryl, metolachlor, napropamide, and simazine—followed the same pattern as diazinon and had lower concentrations in rain compared to runoff. Similar to chlorpyrifos,compounds with low water solubilities and higher soil-organic carbon partition coefficients, including dacthal, pendimethalin, and trifluralin, were found to have higher concentrations in rain than in runoff water and were presumed to partition to the suspended sediments and organic matter on the ground.

During the 2002–04 study period, the herbicide dacthal had the highest detection frequencies for all sample types collected from the Central Valley sites (67–100 percent). The most frequently detected compounds in the wet-deposition samples were dacthal, diazinon, chlorpyrifos, and simazine (greater than 90 percent). The median wet-deposition amounts for these compounds were 0.044 micrograms per square meter per day (μg/m2/day), 0.209 μg/m2/day, 0.079 μg/m2/day, and 0.172 μg/m2/day, respectively. For the dry-deposition samples, detection frequencies were greater than 73 percent for the compounds dacthal, metolachor, and chlorpyrifos, and median deposition amounts were an order of magnitude less than for wet deposition. The differences between wet deposition and dry deposition appeared to be closely related to the Henry’s Law (H) constant of each compound, although the mass deposited by dry deposition takes place over a much longer time frame.

Pesticides detected in rainfall usually were detected in the aqueous phase of the soil-box runoff water, and the runoff concentrations were generally similar to those in the rainfall. For compounds detected in the aqueous phase and suspended-sediment samples of soil-box runoff, concentrations of pesticides in the aqueous phase generally were detected in low concentrations and had few corresponding detections in the suspended- sediment samples. Dacthal, diazinon, chlorpyrifos, and simazine were the most frequently detected pesticides (greater than 83 percent) in the aqueous-phase samples, with median concentrations of 0.010 μg/L, 0.045 μg/L, 0.016 μg/L, and 0.077 μg/L, respectively. Simazine was the most frequently detected compound in the suspended-sediment samples (69 percent), with a median concentration of 0.232 μg/L.

Results for compounds detected in the surficial-soil samples collected throughout the study period showed that there was an increase in concentration for some compounds, indicating atmospheric deposition of these compounds onto the soil-box surface. In the San Joaquin Valley, the compounds chlorpyrifos, dacthal, and iprodione were detected at higher concentrations (between 1.4 and 2 times greater) than were found in the background samples collected from the San Joaquin Valley soil-box sites. In the Sacramento Valley, the compounds chlorpyrifos, dacthal, iprodione, parathionmethyl, and its oxygen analog, paraoxon-methyl, were detected in samples collected during the study period in low concentrations, but were not detected in the background concentration of the Sacramento Valley soil mix.

Publication Year 2013
Title Methods, quality assurance, and data for assessing atmospheric deposition of pesticides in the Central Valley of California
DOI 10.3133/sir20135023
Authors Celia Zamora, Michael S. Majewski, William T. Foreman
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Scientific Investigations Report
Series Number 2013-5023
Index ID sir20135023
Record Source USGS Publications Warehouse
USGS Organization California Water Science Center