Mineralogy as a function of depth in the prehistoric Makaopuhi tholeiitic lava lake, Hawaii
The electron probe X-ray microanalyzer has been used to determine the compositional variability of the groundmass minerals and glass in 10 specimens from a complete 225-foot section of the prehistoric tholeiitic lava lake of Makaopuhi Crater, Hawaii. The order of beginning of crystallization was: (1) chromite, (2) olivine, (3) augite, (4) plagioclase, (5) pigeonite, (6) iron-titanium oxides and orthopyroxene, (7) alkali feldspar and apatite, and (8) glass.
Although the lake is chemically tholeiitic throughout, the occurrence of ferromagnesian minerals is as though there were a gradation from alkali olivine basalt in the upper chill downwards to olivine tholeiite. Groundmass olivine decreases downwards and disappears at about 20 feet. Pigeonite is absent in the uppermost 5±2 feet, then increases in amount down to 20 feet, below which augite and pigeonite coexist in constant 2∶1 proportions. Strong zoning and metastable compositions characterize the pyroxenes of the chilled zones, but these features gradually disappear towards the interior of the lake to give way to equilibrium pyroxenes. Relatively homogeneous poikilitic orthopyroxene (≈ Ca4Mg70Fe26) occurs in the olivine cumulate zone, having formed partly at the expense of pre-existing olivine, augite, and pigeonite (≈ Ca8Mg66Fe26). The growth of orthopyroxene is believed to have been facilitated by the slower cooling rate and higher volatile pressure at depth, and by the rise in Mg/Fe ratio of the liquid due to the partial dissolution of settled olivine.
Unlike olivine and pyroxene, feldspar is least zoned in the upper and lower chilled regions. The greatest range of compositional zoning in feldspar occurs at 160 to 190 feet, where it extends continuously from Or1.0Ab22An77 to Or64Ab33An3. The feldspar fractionation trend in the An-Ab-Or triangle gradually shifts with depth toward more “equilibrium” trends, even though the zoning becomes more extreme. The variation with depth in the initial (core) composition of the plagioclase suggests the influence of either slow nucleation and growth (undercooling) or slow diffusion in the liquid, relative to the rate of cooling.
Idiomorphic opaque inclusions in olivine phenocrysts are chrome-spinels showing continuous variation from 60 percent chromite to 85 percent ulvospinel and to magnetite-rich spinel. A pre-eruption trend of increasing Al with decreasing Cr can be recognized in chromites from the upper chill. Most of the inclusions show a trend of falling Cr and Al, toward an ulvospinelmagnetite solid solution which is progressively poorer in Usp with depth. This trend was produced by solid state alteration of the chromite inclusions during cooling in the lava lake. Ilmenite (average Ilm91Hm9) coexists with variably oxidized titaniferous magnetite in the basalt groundmass. Estimated oxygen fugacities agree well with other independent determinations in tholeiitic basalt. No sulfide phase has been detected.
Fractional crystallization produced a groundmass glass of granitic composition. Average, in percent, is: SiO2, 75.5; Al2O3, 12.5; K2O, 5.7; Na2O, 3.1; CaO, 0.3; MgO, 0.05; total FeO, 1.2; and TiO2, 0.8. Normative Or> Ab. Minor changes in glass composition with depth are consistent with a greater approach towards the granite minimum. Incipient devitrification precluded reliable analysis of glass from the lower half of the section. The SiO2-phase associated with devitrification contains alkalis and Al and is believed to be cristobalite. Needle-like apatite crystals in the groundmass glass are Siand Fe-bearing fluorapatites containing appreciable rare earths (predominantly Ce) and variable Cl.
The grain-size and maximum An content of the cores of plagioclase grains were controlled by cooling rate and are at a maximum at the center of the section. The most homogeneous pyroxene (and olivine, MOORE and EVANS, 1967), most equilibrium pyroxene trends, most abundant alkali feldspar, and most equilibrium feldspar trends are found at 160 to 190 feet, which is appreciably below that part of the lake which was slowest to crystallize. Volatile pressure, increasing with depth, possibly controlled the degree of attainment of equilibrium more than cooling rate.
Since they are dependent on cooling history, some of the modal criteria commonly used for recognizing basalt types, such as the absence of Ca-poor pyroxene, presence of groundmass olivine, and the presence of alkali feldspar, should be applied with caution. Petrographic comparison of basalts from one flow, volcano, or province, with another, should recognize the possible variations due to cooling history alone.
Citation Information
Publication Year | 1968 |
---|---|
Title | Mineralogy as a function of depth in the prehistoric Makaopuhi tholeiitic lava lake, Hawaii |
DOI | 10.1007/BF00373204 |
Authors | B.W. Evans, J. G. Moore |
Publication Type | Article |
Publication Subtype | Journal Article |
Series Title | Contributions to Mineralogy and Petrology |
Index ID | 70011498 |
Record Source | USGS Publications Warehouse |