Skip to main content
U.S. flag

An official website of the United States government

Mineralogy and the release of trace elements from slag from the Hegeler Zinc smelter, Illinois (USA)

January 1, 2010

Slag from the former Hegeler Zn-smelting facility in Illinois (USA) is mainly composed of spinifex Ca-rich plagioclase, fine-grained dendritic or coarse-grained subhedral to anhedral clinopyroxenes, euhedral to subhedral spinels, spherical blebs of Fe sulfides, silicate glass, and less commonly fayalitic olivine. Mullite and quartz were also identified in one sample as representing remnants of the furnace lining. Secondary phases such as goethite, hematite and gypsum are significant in some samples and reflect surficial weathering of the dump piles or represent byproducts of roasting. A relatively rare Zn-rich material contains anhedral willemite, subhedral gahnite, massive zincite, hardystonite and a Zn sulfate (brianyoungite), among other phases, and likely represents the molten content of the smelting furnace before Zn extraction. The bulk major-element chemistry of most slag samples is dominated by SiO2, Al2O3, Fe2O3 and CaO. The bulk composition of the slag suggests a high viscosity of the melt and the mineralogy suggests a high silica content of the melt. Bulk slag trace-element chemistry shows that the dominant metal is Zn with >28.4 wt.% in the Zn-rich material and between 212 and 14,900 mg/kg in the other slags. The concentrations of other trace elements reach the following: 45 mg/kg As, 1170 mg/kg Ba, 191 mg/kg Cd, 242 mg/kg Co, 103 mg/kg Cr, 6360 mg/kg Cu, 107 mg/kg Ni, and 711 mg/kg Pb.

Zinc, as the dominant metal in the slags, is likely the most environmentally significant metal in these samples; Cd, Cu, and Pb are also of concern and their concentrations exceed US Environmental Protection Agency preliminary remediation goals for residential soils. Spinel was found to be the dominant concentrator of Zn for samples containing significant Zn (>1 wt.%); the silicate glass also contained relatively high concentrations of Zn compared to other phases. Zinc partitioned into the silicates and oxides in these samples is generally more resistant to weathering and therefore less leached when compared to the slag samples with lower bulk Zn concentrations where Zn is likely partitioned into volumetrically minor sulfides. This is confirmed by leachate tests that resulted in low leachate Zn concentrations for samples with Zn partitioned into spinel. In contrast, the concentrations of Zn and SO4 are close to those expected from the dissolution of stoichiometric ZnS in leachates from samples in which the dominant host of Zn is suspected to be sulfides. The fact that Zn and other metals occur commonly as sulfides, which are more reactive than the silicates and oxides into which they dominantly partition according to other slag studies, indicates the Hegeler slag pile may be more of an environmental concern than other slag piles.

Publication Year 2010
Title Mineralogy and the release of trace elements from slag from the Hegeler Zinc smelter, Illinois (USA)
DOI 10.1016/j.apgeochem.2009.12.001
Authors Nadine M. Piatak, Robert R. Seal
Publication Type Article
Publication Subtype Journal Article
Series Title Applied Geochemistry
Index ID 70035585
Record Source USGS Publications Warehouse
USGS Organization Eastern Mineral and Environmental Resources Science Center