Skip to main content
U.S. flag

An official website of the United States government

Modeling effects of disturbance across life history strategies of stream fishes

May 20, 2021

A central goal of population ecology is to establish linkages between life history strategy, disturbance, and population dynamics. Globally, disturbance events such as drought and invasive species have dramatically impacted stream fish populations and contributed to sharp declines in freshwater biodiversity. Here, we used RAMAS-Metapop to construct stage-based demographic metapopulation models for stream fishes with periodic, opportunistic, and equilibrium life history strategies and assessed their responses to disturbance scenarios that approximated the effects of invasion, drought, and the additive effects of both disturbances. Our models indicated that populations respond differentially to disturbance based on life history strategy. Equilibrium strategists were best able to deal with simulated invasion. Periodic strategists did well under lower levels of drought, whereas opportunistic strategists outperformed other life histories under extreme seasonal drought. When we modeled additive effects scenarios, these disturbances interacted synergistically, dramatically increasing terminal extinction risk for all three life history strategies. Modeling exercises that examine broad life history categories can help to answer fundamental ecological questions about the relationship between disturbance resilience and life history, as well as help managers to develop generalized conservation strategies when species-specific data are lacking. Our results indicate that life history strategy is a fundamental determinant of population trajectories, and that disturbances can interact synergistically to dramatically impact extinction outcomes.

Publication Year 2021
Title Modeling effects of disturbance across life history strategies of stream fishes
DOI 10.1007/s00442-021-04941-8
Authors Robert J. Fournier, Nick R. Bond, Daniel D. Magoulick
Publication Type Article
Publication Subtype Journal Article
Series Title Oecologia
Index ID 70228361
Record Source USGS Publications Warehouse
USGS Organization Coop Res Unit Atlanta