In recent years carbon dioxide intrusion has become recognized as a potentially serious health threat where homes are constructed on or near reclaimed surface coal mines. When carbon dioxide invades the living space of a home, it can collect near the floor, displace the oxygen there, and produce an oxygen-deficient environment. In this investigation, several lines of inquiry were pursued to determine the environmental factors that most influence carbon dioxide intrusion at a Pike County, Ind., home where this phenomenon is known to occur. It was found that carbon dioxide intrusion events at the home are most closely tied to rapid drops in barometric pressure and rainfall. Other researchers have shown that windy conditions and periods of cold weather also can contribute to soil-gas intrusion to structures. From this, a conceptual model was developed to illustrate the influence of these four meteorological conditions. Additionally, three mitigation methods-block-wall depressurization, block-wall and sub-slab depressurization, and block-wall and sub-slab pressurization-were applied successively to the study-site home, and environmental data were collected to evaluate the effectiveness of each mitigation method. In each case, it was found that these methods did not ensure a safe environment when meteorological conditions were favorable for carbon dioxide intrusion.