Skip to main content
U.S. flag

An official website of the United States government

Phytoplankton bloom dynamics in coastal ecosystems: A review with some general lessons from sustained investigation of San Francisco Bay, California

January 1, 1996

Phytoplankton blooms are prominent features of biological variability in shallow coastal ecosystems such as estuaries, lagoons, bays, and tidal rivers. Long-term observation and research in San Francisco Bay illustrates some patterns of phytoplankton spatial and temporal variability and the underlying mechanisms of this variability. Blooms are events of rapid production and accumulation of phytoplankton biomass that are usually responses to changing physical forcings originating in the coastal ocean (e.g., tides), the atmosphere (wind), or on the land surface (precipitation and river runoff). These physical forcings have different timescales of variability, so algal blooms can be short-term episodic events, recurrent seasonal phenomena, or rare events associated with exceptional climatic or hydrologic conditions. The biogeochemical role of phytoplankton primary production is to transform and incorporate reactive inorganic elements into organic forms, and these transformations are rapid and lead to measurable geochemical change during blooms. Examples include the depletion of inorganic nutrients (N, P, Si), supersaturation of oxygen and removal of carbon dioxide, shifts in the isotopic composition of reactive elements (C, N), production of climatically active trace gases (methyl bromide, dimethylsulfide), changes in the chemical form and toxicity of trace metals (As, Cd, Ni, Zn), changes in the biochemical composition and reactivity of the suspended particulate matter, and synthesis of organic matter required for the reproduction and growth of heterotrophs, including bacteria, zooplankton, and benthic consumer animals. Some classes of phytoplankton play special roles in the cycling of elements or synthesis of specific organic molecules, but we have only rudimentary understanding of the forces that select for and promote blooms of these species. Mounting evidence suggests that the natural cycles of bloom variability are being altered on a global scale by human activities including the input of toxic contaminants and nutrients, manipulation of river flows, and translocation of species. This hypothesis will be a key component of our effort to understand global change at the land-sea interface. Pursuit of this hypothesis will require creative approaches for distinguishing natural and anthropogenic sources of phytoplankton population variability, as well as recognition that the modes of human disturbance of coastal bloom cycles operate interactively and cannot be studied as isolated processes.

Publication Year 1996
Title Phytoplankton bloom dynamics in coastal ecosystems: A review with some general lessons from sustained investigation of San Francisco Bay, California
DOI 10.1029/96RG00986
Authors James E. Cloern
Publication Type Article
Publication Subtype Journal Article
Series Title Reviews of Geophysics
Index ID 70161987
Record Source USGS Publications Warehouse
USGS Organization San Francisco Bay-Delta; Toxic Substances Hydrology Program; Pacific Regional Director's Office