Skip to main content
U.S. flag

An official website of the United States government

Radium isotopes in Cayuga Lake, New York: Indicators of inflow and mixing processes

January 1, 2005

Naturally occurring radium isotopes (223Ra, 224Ra, 226Ra, and 228Ra) were measured in lake and tributary water of Cayuga Lake, New York, during the course of a vernal inflow event in the spring of 2001. A large influx of groundwater, probably from a carbonate aquifer, entered the lake at its extreme southern end early in the vernal inflow event and spread northward, covering an extensive part of the southern end of the lake. The low 228Ra/226Ra activity ratio of this water mass, compared with bulk lake water, allowed its identification through time. Estimates of mixing with bulk lake water were calculated from changes in the 226Ra content. Groundwater inflow to the lake around the delta of a major tributary was detected on the basis of 223Ra and 224Ra activity of lake and tributary water. Inflow of a water mass to the surface of the lake was also detected using 223Ra and 224Ra activity. The integrity of this water mass was monitored using short‐lived radium isotopes. Suspended sediment in the lake water is a source of the short‐lived radium isotopes 223Ra (~2 x 10−4dpm L−1) and 224Ra (~3 x x 10−3 dpm L−1), but bottom sediments are a more significant source of 228Ra. Radium isotopes can be valuable new tools in limnological investigations, allowing detection and monitoring of events and processes such as water inflow and mixing, determining sources of inflowing water, and monitoring introduced water masses as they move within the lake.

Publication Year 2005
Title Radium isotopes in Cayuga Lake, New York: Indicators of inflow and mixing processes
DOI 10.4319/lo.2005.50.1.0158
Authors T. F. Kraemer
Publication Type Article
Publication Subtype Journal Article
Series Title Limnology and Oceanography
Index ID 70029454
Record Source USGS Publications Warehouse
USGS Organization Toxic Substances Hydrology Program