Several chromatographic methods have been utilized to study the retentionbehavior of a homologous series of n-alkylbenzyldimethylammonium chlorides (ABDAC) and the corresponding nitroso-n-alkylmethylamines (NAMA). Linear correlation of the logarithmic capacity factor (k') with the number of carbons in the alkyl chain provides useful information on both gas chromatographic (GC) and high-performance liquid chromatographich (HPLC) retention parameters of unknown components. Under all conditions empolyed, GC methodology has proved effective in achieving complete resolution of the homologous mixture of NMA despite its obvious inadequacy in the separation of E-Z configurational isomers. Conversely, normal-phase HPLC on silica demonstrates that the selectivity (a) value for an E-Z pair is much higher than that for an adjacent homologous pair. In the reversed-phase HPLC study, three different silica-based column systems were examined under various mobile phase conditions. The extent of variation in k' was found to be a function of the organic modifier, counter-ion concentration, eluent pH, nature of counter-ion, and the polarity and type of stationary phase. The k'—[NaClO4] profiles showed similar trends between the ABDAC and the NAMA series, supporting the dipolar electronic structures of the latter compounds. Mobile phase and stationary phase effects on component separation are described. The methodology presented establishes the utility of HPLC separation techniques as versatile analytical tools for practical application.