Skip to main content
U.S. flag

An official website of the United States government

The role of disseminated calcite in the chemical weathering of granitoid rocks

January 1, 1999

Accessory calcite, present at concentrations between 300 and 3000 mg kg-1, occurs in fresh granitoid rocks sampled from the Merced watershed in Yosemite National Park, CA, USA; Loch Vale in Rocky Mountain National Park CO USA; the Panola watershed, GA USA; and the Rio Icacos, Puerto Rico. Calcite occurs as fillings in microfractures, as disseminated grains within the silicate matrix, and as replacement of calcic cores in plagioclase. Flow-through column experiments, using de-ionized water saturated with 0.05 atm. CO2, produced effluents from the fresh granitoid rocks that were dominated by Ca and bicarbonate and thermodynamically saturated with calcite. During reactions up to 1.7 yr, calcite dissolution progressively decreased and was superceded by steady state dissolution of silicates, principally biotite. Mass balance calculations indicate that most calcite had been removed during this time and accounted for 57-98% of the total Ca released from these rocks. Experimental effluents from surfically weathered granitoids from the same watersheds were consistently dominated by silicate dissolution. The lack of excess Ca and alkalinity indicated that calcite had been previously removed by natural weathering. The extent of Ca enrichment in watershed discharge fluxes corresponds to the amounts of calcite exposed in granitoid rocks. High Ca/Na ratios relative to plagioclase stoichiometries indicate excess Ca in the Yosemite, Loch Vale, and other alpine watersheds in the Sierra Nevada and Rocky Mountains of the western United States. This Ca enrichment correlates with strong preferential weathering of calcite relative to plagioclase in exfoliated granitoids in glaciated terrains. In contrast, Ca/Na flux ratios are comparable to or less than the Ca/Na ratios for plagioclase in the subtropical Panola and tropical Rio Icacos watersheds, in which deeply weathered regoliths exhibit concurrent losses of calcite and much larger masses of plagioclase during transport-limited weathering. These results indicate that the weathering of accessory calcite may strongly influence Ca and alkalinity fluxes from silicate rocks during and following periods of glaciation and tectonism but is much less important for older stable geomorphic surfaces.

Publication Year 1999
Title The role of disseminated calcite in the chemical weathering of granitoid rocks
DOI 10.1016/S0016-7037(99)00082-4
Authors A. F. White, T.D. Bullen, D.V. Vivit, M. S. Schulz, D. W. Clow
Publication Type Article
Publication Subtype Journal Article
Series Title Geochimica et Cosmochimica Acta
Index ID 70021504
Record Source USGS Publications Warehouse
Was this page helpful?