The Lake Wales Ridge Monitoring (LWRM) Network was established to provide a long-term record of water quality of the surficial aquifer in one of the principal citrus-production areas of Florida. This region is underlain by sandy soils that contain minimal organic matter and are highly vulnerable to leaching of chemicals into the subsurface. This report documents the 1989 through May 2010 sampling history of the LWRM Network and summarizes monitoring results for 38 Network wells that were sampled during the period January 2009 through May 2010. During 1989 through May 2010, the Network’s citrus land-use wells were sampled intermittently to 1999, quarterly from April 1999 to October 2009, and thereafter quarterly to semiannually. The water-quality summaries in this report focus on the period January 2009 through May 2010, during which the Network’s citrus land-use wells were sampled six times and the non-citrus land-use wells were sampled two times. Within the citrus land-use wells sampled, a total of 13 pesticide compounds (8 parent pesticides and 5 degradates) were detected of the 37 pesticide compounds analyzed during this period. The most frequently detected compounds included demethyl norflurazon (83 percent of wells), norflurazon (79 percent), aldicarb sulfoxide (41 percent), aldicarb sulfone (38 percent), imidacloprid (38 percent), and diuron (28 percent). Agrichemical concentrations in samples from the citrus land-use wells during the 2009 through May 2010 period exceeded Federal drinking-water standards (maximum contaminant levels, MCLs) in 1.5 to 24 percent of samples for aldicarb and its degradates (sulfone and sulfoxide), and in 68 percent of the samples for nitrate. Florida statutes restrict the distance of aldicarb applications to drinking-water wells; however, these statutes do not apply to monitoring wells. Health-screening benchmark levels that identify unregulated chemicals of potential concern were exceeded for norflurazon and diuron in 29 and 7 percent, respectively, of the 2009–2010 samples. A comparison of agrichemical land-use effects on groundwater quality, determined on the basis of samples from LWRM Network wells in citrus and in non-citrus land-use areas, indicated significantly higher (p