We present a mid to late Holocene sea-level record derived from drilling the New Jersey coast that shows a relatively constant rise of 1.8??mm/yr from ~ 5000 to 500 calibrated calendar years before present (yrBP). This contrasts with previous New Jersey estimates that showed only 0.5??mm/yr rise since 2000??yrBP. Comparison with other Mid-Atlantic sea-level records (Delaware to southern New England) indicates surprising uniformity considering different proximities to the peripheral bulge of the Laurentide ice sheet, with a relative rise throughout the region of ~ 1.7-1.9??mm/yr since ~ 5000??yrBP. This regional sea-level rise includes both: 1) global sea-level (eustatic) rise; and 2) far-field geoidal subsidence (estimated as ~ 0.8-1.4??mm/yr today) due to removal of the Laurentide ice sheet and water loading. Correcting for geoidal subsidence, the U.S. east coast records suggest a global sea-level (eustatic) rise of ~ 0.4-1.0??mm/yr (with a best estimate of 0.7 ?? 0.3??mm/yr) since 5000??yrBP. Comparison with other records provides a best estimate of pre-anthropogenic global sea-level rise of < 1.0??mm/yr from 5000 until ~ 200??yrBP. Tide gauge data indicate a 20th century rate of eustatic rise of 1.8??mm/yr, whereas both tide gauge and satellite data suggest an increase in the rate of rise to ~ 3.3??mm/yr from 1993-2006 AD. This indicates that the modern rise (~ 3.3??mm/yr) is significantly higher than the pre-anthropogenic rise (0.7 ?? 0.3??mm/yr). ?? 2008 Elsevier B.V. All rights reserved.