Skip to main content
U.S. flag

An official website of the United States government

Simulated fissioning of uranium and testing of the fission-track dating method

January 1, 1985

A computer program (FTD-SIM) faithfully simulates the fissioning of 238U with time and 235U with neutron dose. The simulation is based on first principles of physics where the fissioning of 238U with the flux of time is described by Ns = ??f 238Ut and the fissioning of 235U with the fluence of neutrons is described by Ni = ??235U??. The Poisson law is used to set the stochastic variation of fissioning within the uranium population. The life history of a given crystal can thus be traced under an infinite variety of age and irradiation conditions. A single dating attempt or up to 500 dating attempts on a given crystal population can be simulated by specifying the age of the crystal population, the size and variation in the areas to be counted, the amount and distribution of uranium, the neutron dose to be used and its variation, and the desired ratio of 238U to 235U. A variety of probability distributions can be applied to uranium and counting-area. The Price and Walker age equation is used to estimate age. The output of FTD-SIM includes the tabulated results of each individual dating attempt (sample) on demand and/or the summary statistics and histograms for multiple dating attempts (samples) including the sampling age. An analysis of the results from FTD-SIM shows that: (1) The external detector method is intrinsically more precise than the population method. (2) For the external detector method a correlation between spontaneous track count, Ns, and induced track count, Ni, results when the population of grains has a stochastic uranium content and/or when the counting areas between grains are stochastic. For the population method no correlation can exist. (3) In the external detector method the sampling distribution of age is independent of the number of grains counted. In the population method the sampling distribution of age is highly dependent on the number of grains counted. (4) Grains with zero-track counts, either in Ns or Ni, are in integral part of fissioning theory and under certain circumstances must be included in any estimate of age. (5) In estimating standard error of age the standard error of Ns and Ni and ?? must be accurately estimated and propagated through the age equation. Several statistical models are presently available to do so. ?? 1985.

Publication Year 1985
Title Simulated fissioning of uranium and testing of the fission-track dating method
DOI 10.1016/0735-245X(85)90126-7
Authors V.E. McGee, N.M. Johnson, C.W. Naeser
Publication Type Article
Publication Subtype Journal Article
Series Title Nuclear Tracks and Radiation Measurements (1982)
Index ID 70012344
Record Source USGS Publications Warehouse