We document the recent reappearance of anadromous sockeye salmon (Oncorhynchus nerka) that were thought to have been extirpated by the construction of hydroelectric dams on the Coquitlam and Alouette rivers in British Columbia, Canada, in 1914 and 1927, respectively. Unexpected downstream migrations of juveniles during experimental water releases into both rivers in 2005 and 2006 preceded upstream return migrations of adults in 2007 and 2008. Genetic (microsatellite and mitochondrial DNA) markers and stable isotope (δ34S and 87Sr/86Sr) patterns in otoliths confirm that both the juvenile downstream migrants and adult upstream migrants were progeny of nonanadromous sockeye salmon (kokanee) that inhabit Coquitlam and Alouette reservoirs. Low genetic diversity and evidence of genetic bottlenecks suggest that the kokanee populations in both reservoirs originated from relatively few anadromous individuals that residualized after downstream migration was largely prevented by the construction of dams. Once given an opportunity for upstream and downstream migration, both populations appear capable of reverting to a successful anadromous form, even after 25 generations.