Skip to main content
U.S. flag

An official website of the United States government

Southern marl prairies conceptual ecological model

January 1, 2005

About 190,000 ha of higher-elevation marl prairies flank either side of Shark River Slough in the southern Everglades. Water levels typically drop below the ground surface each year in this landscape. Consequently, peat soil accretion is inhibited, and substrates consist either of calcitic marl produced by algal periphyton mats or exposed limestone bedrock. The southern marl prairies support complex mosaics of wet prairie, sawgrass sawgrass (Cladium jamaicense), tree islands, and tropical hammock communities and a high diversity of plant species. However, relatively short hydroperiods and annual dry downs provide stressful conditions for aquatic fauna, affecting survival in the dry season when surface water is absent. Here, we present a conceptual ecological model developed for this landscape through scientific consensus, use of empirical data, and modeling. The two major societal drivers affecting the southern marl prairies are water management practices and agricultural and urban development. These drivers lead to five groups of ecosystem stressors: loss of spatial extent and connectivity, shortened hydroperiod and increased drought severity, extended hydroperiod and drying pattern reversals, introduction and spread of non-native trees, and introduction and spread of non-native fishes. Major ecological attributes include periphyton mats, plant species diversity and community mosaic, Cape Sable seaside sparrow (Ammodramus maritimus mirabilis), marsh fishes and associated aquatic fauna prey base, American alligator (Alligator mississippiensis), and wading bird early dry season foraging. Water management and development are hypothesized to have a negative effect on the ecological attributes of the southern marl prairies in the following ways. Periphyton mats have decreased in cover in areas where hydroperiod has been significantly reduced and changed in community composition due to inverse responses to increased nutrient availability. Plant species diversity and community mosaics have changed due to shifting gradients to more terrestrial or more aquatic communities, displacement of native communities by non-natives, expansion of woody plants, high-intensity dry season fires, tree-island burnout, and reduced microtopography resulting from alligator population decline. Cape Sable seaside sparrow populations are threatened by nest destruction resulting from extended hydroperiods, drying pattern reversals, and high intensity dry season fires, as well as by the expansion of woody plants into graminoid wetland habitats. Populations of marsh fishes and associated aquatic fauna that constitute the aquatic prey base for higher vertebrates have decreased in density and changed in species composition and size structure due to loss of wetland spatial extent, shortened hydroperiod, increased drought severity, loss of aquatic drought refugia in solution holes and alligator holes, and spread of exotic fishes. American alligator populations have declined in the Rocky Glades, and alligator holes have filled with sediment, as a result of shortened hydroperiod and increased drought severity. Habitat options for wading birds to forage during the early dry season and during unusually wet years have been reduced due to loss of spatial extent and shortened hydroperiod.

Publication Year 2005
Title Southern marl prairies conceptual ecological model
DOI 10.1672/0277-5212(2005)025[0821:SMPCEM]2.0.CO;2
Authors S.M. Davis, W.F. Loftus, E.E. Gaiser, A.E. Huffman
Publication Type Article
Publication Subtype Journal Article
Series Title Wetlands
Index ID 1008464
Record Source USGS Publications Warehouse
USGS Organization Florida Integrated Science Center