Spatial and temporal deformation along the northern San Jacinto fault, southern California: Implications for slip rates
The San Timoteo badlands is an area of uplift and erosional dissection that has formed as a result of late Quaternary uplift along a restraining bend in the San Jacinto fault, of the San Andreas fault system in southern California. This bend currently is located in a region where late Quaternary deposits and associated surfaces have formed in lower San Timoteo Canyon. We have used morphometric analysis of these surfaces, in conjunction with computer modeling of deformational patterns along the San Jacinto fault, to reconstruct spatial and temporal variations in uplift along the bend. Morphometric techniques used include envelope/subenvelope mapping, a gradient-length index along channels, and denudation values. Age control is determined using a combination of thermoluminescence (TL) and near infrared optical simulation luminescence dating (IROSL) and correlation of soil-development indices. These approaches are combined with an elastic half-space model used to determine the deformation associated with the fault bend. The region of modeled uplift has a similar distribution as that determined by morphometric techniques. Luminescence dates and soil-correlation age estimates generally agree. Based on soil development, surfaces within the study area were stabilized at approximately 300-700 ka for Q3, 43-67 ka for Q2, and 27.5-67 ka for Q1. Luminescence ages (both TL and IROSL) for the formation of the younger two surfaces are 58 to 94 ka for Q2 and 37 to 62 ka for Q1 (ages reported to 1?? uncertainty). Periods of uplift were determined for the surfaces in the study area, resulting in approximate uplift rates of 0.34 to 0.84 m/ka for the past 100 ka and 0.13 to 1.00 m/ka for the past 66 ka. Comparison of these rates of uplift to those generated by the model support a higher rate of lateral slip along the San Jacinto fault than commonly assumed (greater than 20 mm/yr, as compared to 8-12 mm/yr commonly cited). This higher slip rate supports the proposal that a greater amount of slip has transferred from the San Andreas fault to the San Jacinto fault than generally held. The San Jacinto fault may have accommodated a significant portion of the plate boundary slip during the past 100 ka.
Citation Information
Publication Year | 2002 |
---|---|
Title | Spatial and temporal deformation along the northern San Jacinto fault, southern California: Implications for slip rates |
DOI | 10.1785/0120000615 |
Authors | K.J. Kendrick, D. M. Morton, S. G. Wells, R. W. Simpson |
Publication Type | Article |
Publication Subtype | Journal Article |
Series Title | Bulletin of the Seismological Society of America |
Index ID | 70024218 |
Record Source | USGS Publications Warehouse |
USGS Organization | Earthquake Science Center |