Minor and major levels of vanadium in rutile are separated from titanium and iron by sample fusion with sodium carbonate followed by water leach and filtration. The filtrate is then acidified with hydrochloric acid. Silicates are decomposed with a mixture of hydrofluoric and hydrochloric acids, and iron is separated by extraction of its chloride with diethyl ether. Sample vanadium in hydrochloric acid is then quantitatively reduced to vanadium(IV) with sulfurous acid. The remaining sulfur dioxide is expelled by heating. Vanadium (IV) then is reacted with excess of iron(III) at reduced acidity (pH 5) in the presence of 1,10-phenanthroline to yield the orange-red iron(II) 1,10-phenanthroline complex. Iron(II) generated by vanadium(IV) is a measure of total vanadium in the sample. The proposed method is free from elemental interferences because the color development cannot take place without the two redox reactions described above, and these are, under the outlined experimental conditions, quantitative only for vanadium.
Citation Information
Publication Year | 1974 |
---|---|
Title | Spectrophotometric determination of vanadium in rutile and in mafic igneous rocks |
Authors | John Marinenko, Leung Mei |
Publication Type | Article |
Publication Subtype | Journal Article |
Series Title | Journal of Research of the U.S. Geological Survey |
Index ID | 70156515 |
Record Source | USGS Publications Warehouse |