Skip to main content
U.S. flag

An official website of the United States government

Surface water-ground water interactions along the lower Dungeness River and vertical hydraulic conductivity of streambed sediments, Clallam County, Washington, September 1999-July 2001

January 1, 1994

The Dungeness River emerges from the Olympic Mountains and flows generally north toward the Strait of Juan De Fuca, crossing the broad, fertile alluvial fan of the Sequim-Dungeness peninsula in northeastern Clallam County, Washington. Increasing competition for the peninsula's ground-water resources, changing water-use patterns, and recent requirements to maintain minimum in-stream flows to enhance endangered salmon and trout populations have severely strained the peninsula's water resources and necessitated a better understanding of the interaction between surface water and groundwater. Three methods were used to characterize the interchange between surface water and groundwater along the lower 11.8 miles of the Dungeness River corridor between September 1999 and July 2001. In-stream mini-piezometers were used to measure vertical hydraulic gradients between the river and the water-table aquifer at 27 points along the river and helped to define the distribution of gaining and losing stream reaches. Seepage runs were used to quantify the net volume of water exchanged between the river and ground water within each of five river reaches, termed 'seepage reaches.' Continuous water-level and water-temperature monitoring at two off-stream well transects provided data on near-river horizontal hydraulic gradients and temporal patterns of water exchange for a representative gaining stream reach and a representative losing stream reach.

Vertical hydraulic gradients in the mini-piezometers generally were negative between river miles 11.8 and 3.6, indicating loss of water from the river to ground water. Gradients decreased in the downstream direction from an average of -0.86 at river mile 10.3 to -0.23 at river mile 3.7. Small positive gradients (+0.01 to +0.02) indicating ground-water discharge occurred in three localized reaches below river mile 3.7. Data from the seepage runs and off-stream transect wells supported and were generally consistent with the mini-piezometer findings. An exception occurred between river miles 8.1 and 5.5 where seepage results showed a small gain and the mini-piezometers showed negative gradients.

Vertical hydraulic conductivity of riverbed sediments was estimated using hydraulic gradients measured with the mini-piezometers and estimated seepage fluxes. The resulting conductivity values ranged from an average of 1 to 29 feet per day and are similar to values reported for similar river environments elsewhere.

The results of this study will be used to calibrate a transient, three-dimensional ground-water flow model of the Sequim-Dungeness peninsula. The model will be used to assess the potential effects on ground-water levels and river flows that result from future water use and land-use changes on the peninsula.