Skip to main content
U.S. flag

An official website of the United States government

SutraGUI, a graphical-user interface for SUTRA, a model for ground-water flow with solute or energy transport

January 1, 2004

This report describes SutraGUI, a flexible graphical user-interface (GUI) that supports two-dimensional (2D) and three-dimensional (3D) simulation with the U.S. Geological Survey (USGS) SUTRA ground-water-flow and transport model (Voss and Provost, 2002). SutraGUI allows the user to create SUTRA ground-water models graphically. SutraGUI provides all of the graphical functionality required for setting up and running SUTRA simulations that range from basic to sophisticated, but it is also possible for advanced users to apply programmable features within Argus ONE to meet the unique demands of particular ground-water modeling projects. SutraGUI is a public-domain computer program designed to run with the proprietary Argus ONE? package, which provides 2D Geographic Information System (GIS) and meshing support. For 3D simulation, GIS and meshing support is provided by programming contained within SutraGUI. When preparing a 3D SUTRA model, the model and all of its features are viewed within Argus 1 in 2D projection. For 2D models, SutraGUI is only slightly changed in functionality from the previous 2D-only version (Voss and others, 1997) and it provides visualization of simulation results. In 3D, only model preparation is supported by SutraGUI, and 3D simulation results may be viewed in SutraPlot (Souza, 1999) or Model Viewer (Hsieh and Winston, 2002). A comprehensive online Help system is included in SutraGUI. For 3D SUTRA models, the 3D model domain is conceptualized as bounded on the top and bottom by 2D surfaces. The 3D domain may also contain internal surfaces extending across the model that divide the domain into tabular units, which can represent hydrogeologic strata or other features intended by the user. These surfaces can be non-planar and non-horizontal. The 3D mesh is defined by one or more 2D meshes at different elevations that coincide with these surfaces. If the nodes in the 3D mesh are vertically aligned, only a single 2D mesh is needed. For nonaligned meshes, two or more 2D meshes of similar connectivity are used. Between each set of 2D meshes (and model surfaces), the vertical space in the 3D mesh is evenly divided into a user-specified number of layers of finite elements. Boundary conditions may be specified for 3D models in SutraGUI using a variety of geometric shapes that may be located freely within the 3D model domain. These shapes include points, lines, sheets, and solids. These are represented by 2D contours (within the vertically-projected Argus ONE view) with user-defined elevations. In addition, boundary conditions may be specified for 3D models as points, lines, and areas that are located exactly within the surfaces that define the model top and the bottoms of the tabular units. Aquifer properties may be specified separately for each tabular unit. If the aquifer properties vary vertically within a unit, SutraGUI provides the Sutra_Z function that can be used to specify such variation.

Publication Year 2004
Title SutraGUI, a graphical-user interface for SUTRA, a model for ground-water flow with solute or energy transport
DOI 10.3133/ofr03285
Authors Richard B. Winston, Clifford I. Voss
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Open-File Report
Series Number 2003-285
Index ID ofr03285
Record Source USGS Publications Warehouse
USGS Organization Toxic Substances Hydrology Program