We present a detailed description of temporal variations in the complex frequencies of long-period (LP) events observed at Kusatsu-Shirane Volcano. Using the Sompi method, we analyze 35 LP events that occurred during the period from August 1992 through January 1993. The observed temporal variations in the complex frequencies can be divided into three periods. During the first period the dominant frequency rapidly decreases from 5 to 1 Hz, and Q of the dominant spectral peak remains roughly constant with an average value near 100. During the second period the dominant frequency gradually increases up to 3 Hz, and Q gradually decreases from 160 to 30. During the third period the dominant frequency increases more rapidly from 3 to 5 Hz, and Q shows an abrupt increase at the beginning of this period and then remains roughly constant with an average value near 100. Such temporal variations can be consistently explained by the dynamic response of a hydrothermal crack to a magmatic heat pulse. During the first period, crack growth occurs in response to the overall pressure increase in the hydrothermal system caused by the heat pulse. Once crack formation is complete, heat gradually changes the fluid in the crack from a wet misty gas to a dry gas during the second period. As heating of the hydrothermal system gradually subsides, the overall pressure in this system starts to decrease, causing the collapse of the crack during the third period.