Skip to main content
U.S. flag

An official website of the United States government

Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA

January 1, 2003

Landslides in the hilly terrain along the Kansas and Missouri rivers in northeastern Kansas have caused millions of dollars in property damage during the last decade. To address this problem, a statistical method called multiple logistic regression has been used to create a landslide-hazard map for Atchison, Kansas, and surrounding areas. Data included digitized geology, slopes, and landslides, manipulated using ArcView GIS. Logistic regression relates predictor variables to the occurrence or nonoccurrence of landslides within geographic cells and uses the relationship to produce a map showing the probability of future landslides, given local slopes and geologic units. Results indicated that slope is the most important variable for estimating landslide hazard in the study area. Geologic units consisting mostly of shale, siltstone, and sandstone were most susceptible to landslides. Soil type and aspect ratio were considered but excluded from the final analysis because these variables did not significantly add to the predictive power of the logistic regression. Soil types were highly correlated with the geologic units, and no significant relationships existed between landslides and slope aspect. ?? 2003 Elsevier Science B.V. All rights reserved.

Citation Information

Publication Year 2003
Title Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA
DOI 10.1016/S0013-7952(03)00069-3
Authors G.C. Ohlmacher, J.C. Davis
Publication Type Article
Publication Subtype Journal Article
Series Title Engineering Geology
Index ID 70025384
Record Source USGS Publications Warehouse