Skip to main content
U.S. flag

An official website of the United States government

Water budgets for selected watersheds in the Delaware River basin, eastern Pennsylvania and western New Jersey

August 30, 2005

This pilot study, done by the U.S. Geological Survey in cooperation with the Delaware River Basin Commission, developed annual water budgets using available data for five watersheds in the Delaware River Basin with different degrees of urbanization and different geological settings. A basin water budget and a water-use budget were developed for each watershed. The basin water budget describes inputs to the watershed (precipitation and imported water), outputs of water from the watershed (streamflow, exported water, leakage, consumed water, and evapotranspiration), and changes in ground-water and surface-water storage. The water-use budget describes water withdrawals in the watershed (ground-water and surface-water withdrawals), discharges of water in the watershed (discharge to surface water and ground water), and movement of water of water into and out of the watershed (imports, exports, and consumed water). The water-budget equations developed for this study can be applied to any watershed in the Delaware River Basin. Data used to develop the water budgets were obtained from available long-term meteorological and hydrological data-collection stations and from water-use data collected by regulatory agencies. In the Coastal Plain watersheds, net ground-water loss from unconfined to confined aquifers was determined by using ground-water-flow-model simulations. Error in the water-budget terms is caused by missing data, poor or incomplete measurements, overestimated or underestimated quantities, measurement or reporting errors, and the use of point measurements, such as precipitation and water levels, to estimate an areal quantity, particularly if the watershed is hydrologically or geologically complex or the data-collection station is outside the watershed. The complexity of the water budgets increases with increasing watershed urbanization and interbasin transfer of water. In the Wissahickon Creek watershed, for example, some ground water is discharged to streams in the watershed, some is exported as wastewater, and some is exported for public supply. In addition, ground water withdrawn outside the watershed is imported for public supply or imported as wastewater for treatment and discharge in the watershed. A GIS analysis was necessary to quantify many of the water-budget components.

The 89.9-square mile East Branch Brandywine Creek watershed in Pennsylvania is a rural watershed with reservoir storage that is underlain by fractured rock. Water budgets were developed for 1977-2001. Average annual precipitation, streamflow, and evapotranspiration were 46.89, 21.58, and 25.88 inches, respectively. Some water was imported (average of 0.68 inches) into the watershed for public-water supply and as wastewater for treatment and discharge; these imports resulted in a net gain of water to the watershed. More water was discharged to East Branch Brandywine Creek than was withdrawn from it; the net discharge resulted in an increase in streamflow. Most ground water was withdrawn (average of 0.25 inches) for public-water supply. Surface water was withdrawn (average of 0.58 inches) for public-water and industrial supply. Discharge of water by sewage-treatment plants and industries (average of 1.22 inches) and regulation by Marsh Creek Reservoir caused base flow to appear an average of 7.2 percent higher than it would have been without these additional sources. On average, 67 percent of the difference was caused by sewage-treatment-plant and industrial discharges, and 33 percent was caused by regulation of the Marsh Creek Reservoir. Water imports, withdrawals, and discharges have been increasing as the watershed becomes increasingly urbanized.

The 64-square mile Wissahickon Creek watershed in Pennsylvania is an urban watershed underlain by fractured rock. Water budgets were developed for 1987-98. Average annual precipitation, streamflow, and evapotranspiration were 47.23, 22.24, and 23.12 inches, respectively. The watershed is highly u

Publication Year 2005
Title Water budgets for selected watersheds in the Delaware River basin, eastern Pennsylvania and western New Jersey
DOI 10.3133/sir20055113
Authors Ronald A. Sloto, Debra E. Buxton
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Scientific Investigations Report
Series Number 2005-5113
Index ID sir20055113
Record Source USGS Publications Warehouse
USGS Organization Pennsylvania Water Science Center