Skip to main content

Water in the Humboldt River Valley near Winnemucca, Nevada

December 31, 1993

Most of the work of the interagency Humboldt River Research Project in the Winnemucca reach of the Humboldt River valley has been completed. More than a dozen State and Federal agencies and several private organizations and individuals participated in the study. The major objective of the project, which began in 1959, is to evaluate the water resources of the entire Humboldt River basin. However, because of the large size of the basin, most of the work during the first 5 years of the project was done in the Winnemucca area. The purpose of this report is to summarize briefly and simply the information regarding the water resources of the Winnemucca area-especially the quantitative aspects of the flow system-given in previous reports of the project.

The Winnemucca reach of the Humboldt River valley, which is in north-central Nevada, is about 200 miles downstream from the headwaters of the Humboldt River and includes that part of the valley between the Comus and Rose Creek gaging stations. Average annual inflow to the storage area (the valley lowlands) in the Winnemucca reach in water years 1949-62 was about 250,000 acre-feet. Of this amount, about 68 percent was Humboldt River streamflow, as measured at the Comus gaging station, 23 percent was precipitation directly on the storage area, 6 percent was ground-water inflow, and about 3 percent was tributary streamflow. Average annual streamflow at the Rose Creek gaging station during the same period was about 155,000 acre-feet, or about 17,000 acre-feet less than that at the Comus gaging station. Nearly all the streamflow lost was consumed by evapotranspiration in the project area. Total average annual evapotranspiration loss during the period was about 115,000 acre-feet, or about 42 percent of the total average annual outflow.

The most abundant ions in the ground and surface water in the area are commonly sodium and bicarbonate. Much of the water has a dissolved-solids content that ranges from 500 to 750 parts per million; however, locally, the dissolved-solids content of the ground water is more than 5,000 parts per million.

The chemical quality of the Humboldt River, especially during periods of low flow, reflects the chemical quality of ground-water inflow from tributary areas that discharges into the river. Almost all water in the project area is moderately hard to very hard; otherwise, it is generally suitable for most uses.

Increased ground-water development, the conjunctive use of ground and surface water, and increased irrigation efficiency would probably conserve much of the water presently consumed by nonbeneficial evapotranspiration. Intensive ground-water development, especially from the highly permeable medial gravel subunit, will, however, decrease the flow of the Humboldt River to the extent that some pumpage may not be offset by a corresponding decrease in natural evapotranspiration losses. Such streamflow depletions will therefore infringe upon downstream surface-water rights.

The results of this study indicate that the Humboldt River and ground water in the unconsolidated deposits beneath and adjacent to the river in the Winnemucca area are closely related. Somewhat similar conditions probably exist elsewhere in the Humboldt River valley. Additional detailed studies are needed-both upstream and downstream from the Winnemucca area-to adequately define the flow system and the interrelations among the components of the system in the remainder of the valley. Before proceeding with additional detailed studies, however, a 1-year overall appraisal of the water resources of the basin should be considered. A major objective of this study would be to provide information that would help select the next subarea of the valley to be studied in detail and to decide which of the methods of study used in the Winnemucca area could be most effectively used in the future studies.