Skip to main content
U.S. flag

An official website of the United States government

Wide-angle seismic constraints on the evolution of the deep San Andreas plate boundary by Mendocino triple junction migration

January 1, 1998

Recent wide-angle seismic observations that constrain the existence and structure of a mafic layer in the lower crust place strong constraints on the evolution of the San Andreas plate boundary system in northern and central California. Northward migration of the Mendocino Triple Junction and the subducted Juan de Fuca lithospheric slab creates a gap under the continent in the new strike-slip system. This gap must be filled by either asthenospheric upwelling or a northward migrating slab attached to the Pacific plate. Both processes emplace a mafic layer, either magmatic underplating or oceanic crust, beneath the California Coast Ranges. A slab of oceanic lithosphere attached to the Pacific plate is inconsistent with the seismic observation that the strike-slip faults cut through the mafic layer to the mantle, detaching the layer from the Pacific plate. The layer could only be attached to the Pacific plate if large vertical offsets and other complex structures observed beneath several strike-slip faults are original oceanic structures that are not caused by the faults. Otherwise, if oceanic slabs exist beneath California, they do not migrate north to fill the growing slab gap. The extreme heat pulse created by asthenospheric upwelling is inconsistent with several constraints from the seismic data, including a shallower depth to the slab gap than is predicted by heat flow models, seismic velocity and structure that are inconsistent with melting or metamorphism of the overlying silicic crust, and a high seismic velocity in the upper mantle. Yet either the Pacific slab model or the asthenospheric upwelling model must be correct. While the mafic material in the lower crust could have been emplaced prior to triple junction migration, the deeper slab gap must still be filled. A preexisting mafic layer does not reduce the inconsistencies of the Pacific slab model. Such material could, however, compensate for the decrease in mafic magma that would be produced if asthenospheric upwelling occurred at a lower temperature. These low temperatures, however, may be inconsistent with asthenospheric rheology.

Citation Information

Publication Year 1998
Title Wide-angle seismic constraints on the evolution of the deep San Andreas plate boundary by Mendocino triple junction migration
Authors J.A. Hole, B. C. Beaudoin, T.J. Henstock
Publication Type Article
Publication Subtype Journal Article
Series Title Tectonics
Index ID 70019744
Record Source USGS Publications Warehouse