Solid, liquid, and gas - the three states of water. We see water freeze, transforming into a solid form such as ice, and we see water evaporate, turning into gas, but... have you ever seen ice transform directly to gas? This process is called sublimation and you can read all about it below.
• Water Science School HOME • The Water Cycle •
Water cycle components » Atmosphere · Condensation · Evaporation · Evapotranspiration · Freshwater lakes and rivers · Groundwater flow · Groundwater storage · Ice and snow · Infiltration · Oceans · Precipitation · Snowmelt · Springs · Streamflow · Sublimation · Surface runoff
Sublimation and the Water Cycle

Credit: Wikimedia Commons, Creative Commons License
Sublimation is the conversion between the solid and the gaseous phases of matter, with no intermediate liquid stage. For those of us interested in the water cycle, sublimation is most often used to describe the process of snow and ice changing into water vapor (gas) in the air without first melting into water. The opposite of sublimation is "deposition", where water vapor changes directly into ice—such a snowflakes and frost.
It is not easy to actually see sublimation occurring, at least not with ice. One way to see the results of sublimation is to hang a wet shirt outside on a below-freezing day. Eventually the ice in the shirt will disappear. An easier way to visualize sublimation is to not use water at all, but to use carbon dioxide instead.
From Mt. Everest to the Chinook winds
Sublimation occurs more readily when certain weather conditions are present, such as low relative humidity and dry winds. Sublimation also occurs more at higher altitudes, where the air pressure is less than at lower altitudes. Energy, such as strong sunlight, is also needed. An example of where sublimation happens a lot is the south face of Mt. Everest. Low temperatures, strong winds, intense sunlight, very low air pressure — just the recipe for sublimation to occur.
Dave Thurlow of the Mount Washington Observatory offers a good explanation of sublimation in The Weather Notebook:
"There's more than one way for Mother Nature to get rid of a fresh blanket of snow. The most common way, of course, is by melting-which gives everyone the pleasure of trudging through slush, mud, and water. But in the western U.S., there's a wind called the Chinook, or "snow eater," that vaporizes snow before it even has a chance to melt."
"Chinook winds are westerlies from the Pacific whose moisture gets wrung out as it passes over the Rocky Mountains. Once these winds come down from the mountains onto the high plains, they can be quite mild and extremely dry, as warm as 60- or 70-degrees Fahrenheit — over 15 Celsius — with a relative humidity of 10% or less. The air is so dry that when it hits a snowpack, the frozen water evaporates, going directly from the ice to vapor and bypassing the liquid phase entirely. This is called sublimation, and it's a common way for snow to disappear in the arid West."
Can't sublimate without the heat
Without the addition of energy (heat) to the process, ice would not sublimate into vapor. That is where sunlight plays a large role in the natural world. Water has a physical property called the "heat of vaporization," which is the amount of heat required to vaporize water. The heat of vaporization of water is 540 calories/gram, or 2,260 kilojoules/kilogram. That is a lot more energy than is needed to convert water to ice (the latent heat of fusion), which is 80 calories/gram. It is also about five times the energy needed for heating water from the freezing point to the boiling point. In summary, energy is needed for the sublimation of ice to vapor to occur, and most of the energy is needed in the vaporization phase. A cubic centimeter (1 gram) of water in ice form requires 80 calories to melt, 100 calories to rise to boiling point, and another 540 calories to vaporize, a total of 720 calories. Sublimation requires the same energy input, but bypasses the liquid phase.
More topics and other components of the water cycle:
Precipitation and the Water Cycle
Streamflow and the Water Cycle
Snowmelt Runoff and the Water Cycle
Evaporation and the Water Cycle
The Atmosphere and the Water Cycle
Condensation and the Water Cycle
Infiltration and the Water Cycle
Springs and the Water Cycle
Surface Runoff and the Water Cycle
Ice, Snow, and Glaciers and the Water Cycle
Groundwater Flow and the Water Cycle
Groundwater Storage and the Water Cycle
Below are multimedia items associated with sublimation.
- Overview
Solid, liquid, and gas - the three states of water. We see water freeze, transforming into a solid form such as ice, and we see water evaporate, turning into gas, but... have you ever seen ice transform directly to gas? This process is called sublimation and you can read all about it below.
• Water Science School HOME • The Water Cycle •
Water cycle components » Atmosphere · Condensation · Evaporation · Evapotranspiration · Freshwater lakes and rivers · Groundwater flow · Groundwater storage · Ice and snow · Infiltration · Oceans · Precipitation · Snowmelt · Springs · Streamflow · Sublimation · Surface runoff
Sublimation and the Water Cycle
Sources/Usage: Some content may have restrictions. Visit Media to see details.A container holding dry ice (frozen carbon dioxide) sublimating into the air. "Dry ice" is actually solid, frozen carbon dioxide, which happens to sublimate, or turn to gas, at a chilly -78.5 °C (-109.3°F). The fog you see is actually a mixture of cold carbon dioxide gas and cold, humid air, created as the dry ice "melts" ... oops, I mean sublimates.
Credit: Wikimedia Commons, Creative Commons LicenseSublimation is the conversion between the solid and the gaseous phases of matter, with no intermediate liquid stage. For those of us interested in the water cycle, sublimation is most often used to describe the process of snow and ice changing into water vapor (gas) in the air without first melting into water. The opposite of sublimation is "deposition", where water vapor changes directly into ice—such a snowflakes and frost.
It is not easy to actually see sublimation occurring, at least not with ice. One way to see the results of sublimation is to hang a wet shirt outside on a below-freezing day. Eventually the ice in the shirt will disappear. An easier way to visualize sublimation is to not use water at all, but to use carbon dioxide instead.
From Mt. Everest to the Chinook winds
Snowy mountains in western Canada. Sublimation occurs more readily when certain weather conditions are present, such as low relative humidity and dry winds. Sublimation also occurs more at higher altitudes, where the air pressure is less than at lower altitudes. Energy, such as strong sunlight, is also needed. An example of where sublimation happens a lot is the south face of Mt. Everest. Low temperatures, strong winds, intense sunlight, very low air pressure — just the recipe for sublimation to occur.
Dave Thurlow of the Mount Washington Observatory offers a good explanation of sublimation in The Weather Notebook:
"There's more than one way for Mother Nature to get rid of a fresh blanket of snow. The most common way, of course, is by melting-which gives everyone the pleasure of trudging through slush, mud, and water. But in the western U.S., there's a wind called the Chinook, or "snow eater," that vaporizes snow before it even has a chance to melt."
"Chinook winds are westerlies from the Pacific whose moisture gets wrung out as it passes over the Rocky Mountains. Once these winds come down from the mountains onto the high plains, they can be quite mild and extremely dry, as warm as 60- or 70-degrees Fahrenheit — over 15 Celsius — with a relative humidity of 10% or less. The air is so dry that when it hits a snowpack, the frozen water evaporates, going directly from the ice to vapor and bypassing the liquid phase entirely. This is called sublimation, and it's a common way for snow to disappear in the arid West."
Can't sublimate without the heat
Without the addition of energy (heat) to the process, ice would not sublimate into vapor. That is where sunlight plays a large role in the natural world. Water has a physical property called the "heat of vaporization," which is the amount of heat required to vaporize water. The heat of vaporization of water is 540 calories/gram, or 2,260 kilojoules/kilogram. That is a lot more energy than is needed to convert water to ice (the latent heat of fusion), which is 80 calories/gram. It is also about five times the energy needed for heating water from the freezing point to the boiling point. In summary, energy is needed for the sublimation of ice to vapor to occur, and most of the energy is needed in the vaporization phase. A cubic centimeter (1 gram) of water in ice form requires 80 calories to melt, 100 calories to rise to boiling point, and another 540 calories to vaporize, a total of 720 calories. Sublimation requires the same energy input, but bypasses the liquid phase.
- Science
More topics and other components of the water cycle:
Filter Total Items: 14Precipitation and the Water Cycle
Precipitation is water released from clouds in the form of rain, freezing rain, sleet, snow, or hail. Precipitation is the main way atmospheric water returns to the surface of the Earth. Most precipitation falls as rain.Streamflow and the Water Cycle
What is streamflow? How do streams get their water? To learn about streamflow and its role in the water cycle, continue reading.Snowmelt Runoff and the Water Cycle
Perhaps you've never seen snow. Or, perhaps you built a snowman this very afternoon and perhaps you saw your snowman begin to melt. Regardless of your experience with snow and associated snowmelt, runoff from snowmelt is an important component of the global movement of water, possibly even if you live where it never snows. Note: This section of the Water Science School discusses the Earth's...Evaporation and the Water Cycle
Evaporation is the process that changes liquid water to gaseous water (water vapor). Water moves from the Earth’s surface to the atmosphere via evaporation.The Atmosphere and the Water Cycle
The atmosphere is the superhighway in the sky that moves water everywhere over the Earth. Water at the Earth's surface evaporates into water vapor, then rises up into the sky to become part of a cloud which will float off with the winds, eventually releasing water back to Earth as precipitation.Condensation and the Water Cycle
Condensation is the process of gaseous water (water vapor) turning into liquid water. Have you ever seen water on the outside of a cold glass on a humid day? That’s condensation.Infiltration and the Water Cycle
You can't see it, but a large portion of the world's freshwater lies underground. It may all start as precipitation, but through infiltration and seepage, water soaks into the ground in vast amounts. Water in the ground keeps all plant life alive and serves peoples' needs, too.Springs and the Water Cycle
A spring is a place where water moving underground finds an opening to the land surface and emerges, sometimes as just a trickle, maybe only after a rain, and sometimes in a continuous flow. Spring water can also emerge from heated rock underground, giving rise to hot springs.Surface Runoff and the Water Cycle
When water "runs off" the land surface, that’s runoff! Due to gravity, the water you wash your car with runs down the driveway as you work, and rain runs downhill. Runoff is an important component of the water cycle.Ice, Snow, and Glaciers and the Water Cycle
The water stored in ice and glaciers moves slowly through are part of the water cycle, even though the water in them moves very slowly. Did you know? Ice caps influence the weather, too. The color white reflects sunlight (heat) more than darker colors, and as ice is so white, sunlight is reflected back out to the sky, which helps to create weather patterns.Groundwater Flow and the Water Cycle
Yes, water below your feet is moving all the time, but not like rivers flowing below ground. It's more like water in a sponge. Gravity and pressure move water downward and sideways underground through spaces between rocks. Eventually it emerges back to the land surface, into rivers, and into the oceans to keep the water cycle going.Groundwater Storage and the Water Cycle
The ground stores huge amounts of water and it exists to some degree no matter where on Earth you are. Lucky for people, in many places the water exists in quantities and at depths that wells can be drilled into the water-bearing aquifers and withdrawn to server the many needs people have. - Multimedia
Below are multimedia items associated with sublimation.