Janice Fulford is the Director of the Observing Systems Division for the USGS Water Resources Mission Area.
Science and Products
Filter Total Items: 28
Testing and use of radar water level sensors by the U.S. Geological Survey
The United States Geological Survey uses water-level (or stage) measurements to compute streamflow at over 8000 stream gaging stations located throughout the United States (waterwatch.usgs.gov, 2016). Streamflow (or discharge) is computed at five minute to hourly intervals from a relationship between water level and discharge that is uniquely determined for each station. The discharges are posted
Accuracy testing of electric groundwater-level measurement tapes
Electric tapes are used to measure groundwater levels and to verify the accuracy of pressure transducers installed in wells. Electric tapes are generally assumed to be accurate to ±0.01 foot (ft), but little information is available from the manufacturers and no accuracy studies have been conducted to confirm this value. This study measured the accuracy of six popular models of electric groundwate
Laboratory and field tests of the Sutron RLR-0003-1 water level sensor
Three Sutron RLR-0003-1 water level sensors were tested in laboratory conditions to evaluate the accuracy of the sensor over the manufacturer’s specified operating temperature and distance-to-water ranges. The sensor was also tested for compliance to SDI-12 communication protocol and in field conditions at a U.S. Geological Survey (USGS) streamgaging site. Laboratory results were compared to the m
Workgroup for Hydraulic laboratory Testing and Verification of Hydroacoustic Instrumentation
An international workgroup was recently formed for hydraulic laboratory testing and verification of hydroacoustic instrumentation used for water velocity measurements. The activities of the workgroup have included one face to face meeting, conference calls and an inter-laboratory exchange of two acoustic meters among participating laboratories. Good agreement was found among four laboratories at h
Quality assurance testing of acoustic doppler current profiler transform matrices
The U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility (HIF) is nationally responsible for the design, testing, evaluation, repair, calibration, warehousing, and distribution of hydrologic instrumentation in use within the USGS Water Mission Area (WMA). The HIF's Hydraulic Laboratory has begun routine quality assurance (QA) testing and documenting the performance of every USGS WMA a
Laboratory evaluation of the Level TROLL 100 manufactured by In-Situ Inc.: results of pressure and temperature tests
The Level TROLL 100 manufactured by In-Situ Inc. was evaluated by the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility (HIF) for conformance to the manufacturer’s accuracy specifications for measuring pressure throughout the device’s operating temperature range. The Level TROLL 100 is a submersible, sealed, water-level sensing device with an operating pressure range equivalent to
Task committee on experimental uncertainty and measurement errors in hydraulic engineering: An update
As part of their long range goals for disseminating information on measurement techniques, instrumentation, and experimentation in the field of hydraulics, the Technical Committee on Hydraulic Measurements and Experimentation formed the Task Committee on Experimental Uncertainty and Measurement Errors in Hydraulic Engineering in January 2003. The overall mission of this Task Committee is to provid
Radar stage uncertainty
The U.S. Geological Survey is investigating the performance of radars used for stage (or water-level) measurement. This paper presents a comparison of estimated uncertainties and data for radar water-level measurements with float, bubbler, and wire weight water-level measurements. The radar sensor was also temperature-tested in a laboratory. The uncertainty estimates indicate that radar measuremen
Field comparison of optical and clark cell dissolved-oxygen sensors
Three multi-parameter water-quality monitors equipped with either Clark cell type or optical type dissolved-oxygen sensors were deployed for 30 days in a brackish (salinity
An intensity scale for riverine flooding
Recent advances in the availability and accuracy of multi-dimensional flow models, the advent of precise elevation data for floodplains (LIDAR), and geographical GIS allow the creation of hazard maps that more correctly reflect the varying levels of flood-damage risk across a floodplain when inundatecby floodwaters. Using intensity scales for wind damages, an equivalent water-damage flow intensity
Model Performance of Water-Current Meters
The measurement of discharge in natural streams requires hydrographers to use accurate water-current meters that have consistent performance among meters of the same model. This paper presents the results of an investigation into the performance of four models of current meters - Price type-AA, Price pygmy, Marsh McBirney 2000 and Swoffer 2100. Tests for consistency and accuracy for six meters of
Science and Products
- Publications
Filter Total Items: 28
Testing and use of radar water level sensors by the U.S. Geological Survey
The United States Geological Survey uses water-level (or stage) measurements to compute streamflow at over 8000 stream gaging stations located throughout the United States (waterwatch.usgs.gov, 2016). Streamflow (or discharge) is computed at five minute to hourly intervals from a relationship between water level and discharge that is uniquely determined for each station. The discharges are postedAccuracy testing of electric groundwater-level measurement tapes
Electric tapes are used to measure groundwater levels and to verify the accuracy of pressure transducers installed in wells. Electric tapes are generally assumed to be accurate to ±0.01 foot (ft), but little information is available from the manufacturers and no accuracy studies have been conducted to confirm this value. This study measured the accuracy of six popular models of electric groundwateLaboratory and field tests of the Sutron RLR-0003-1 water level sensor
Three Sutron RLR-0003-1 water level sensors were tested in laboratory conditions to evaluate the accuracy of the sensor over the manufacturer’s specified operating temperature and distance-to-water ranges. The sensor was also tested for compliance to SDI-12 communication protocol and in field conditions at a U.S. Geological Survey (USGS) streamgaging site. Laboratory results were compared to the mWorkgroup for Hydraulic laboratory Testing and Verification of Hydroacoustic Instrumentation
An international workgroup was recently formed for hydraulic laboratory testing and verification of hydroacoustic instrumentation used for water velocity measurements. The activities of the workgroup have included one face to face meeting, conference calls and an inter-laboratory exchange of two acoustic meters among participating laboratories. Good agreement was found among four laboratories at hQuality assurance testing of acoustic doppler current profiler transform matrices
The U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility (HIF) is nationally responsible for the design, testing, evaluation, repair, calibration, warehousing, and distribution of hydrologic instrumentation in use within the USGS Water Mission Area (WMA). The HIF's Hydraulic Laboratory has begun routine quality assurance (QA) testing and documenting the performance of every USGS WMA aLaboratory evaluation of the Level TROLL 100 manufactured by In-Situ Inc.: results of pressure and temperature tests
The Level TROLL 100 manufactured by In-Situ Inc. was evaluated by the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility (HIF) for conformance to the manufacturer’s accuracy specifications for measuring pressure throughout the device’s operating temperature range. The Level TROLL 100 is a submersible, sealed, water-level sensing device with an operating pressure range equivalent toTask committee on experimental uncertainty and measurement errors in hydraulic engineering: An update
As part of their long range goals for disseminating information on measurement techniques, instrumentation, and experimentation in the field of hydraulics, the Technical Committee on Hydraulic Measurements and Experimentation formed the Task Committee on Experimental Uncertainty and Measurement Errors in Hydraulic Engineering in January 2003. The overall mission of this Task Committee is to providRadar stage uncertainty
The U.S. Geological Survey is investigating the performance of radars used for stage (or water-level) measurement. This paper presents a comparison of estimated uncertainties and data for radar water-level measurements with float, bubbler, and wire weight water-level measurements. The radar sensor was also temperature-tested in a laboratory. The uncertainty estimates indicate that radar measuremenField comparison of optical and clark cell dissolved-oxygen sensors
Three multi-parameter water-quality monitors equipped with either Clark cell type or optical type dissolved-oxygen sensors were deployed for 30 days in a brackish (salinityAn intensity scale for riverine flooding
Recent advances in the availability and accuracy of multi-dimensional flow models, the advent of precise elevation data for floodplains (LIDAR), and geographical GIS allow the creation of hazard maps that more correctly reflect the varying levels of flood-damage risk across a floodplain when inundatecby floodwaters. Using intensity scales for wind damages, an equivalent water-damage flow intensityModel Performance of Water-Current Meters
The measurement of discharge in natural streams requires hydrographers to use accurate water-current meters that have consistent performance among meters of the same model. This paper presents the results of an investigation into the performance of four models of current meters - Price type-AA, Price pygmy, Marsh McBirney 2000 and Swoffer 2100. Tests for consistency and accuracy for six meters of