Rob Graves is a geophysicist in the Earthquake Hazards Program.
Science and Products
Filter Total Items: 40
Validating predicted site response in sedimentary basins from 3D ground motion simulations
We introduce procedures to validate site response in sedimentary basins as predicted using ground motion simulations. These procedures aim to isolate contributions of site response to computed intensity measures relative to those from seismic source and path effects. In one of the validation procedures, simulated motions are analyzed in the same manner as earthquake recordings to derive non-ergodi
Refinements to the Graves–Pitarka kinematic rupture generator, including a dynamically consistent slip‐rate function, applied to the 2019 Mw 7.1 Ridgecrest earthquake
The main objective of this study is to develop physics‐based constraints on the spatiotemporal variation of the slip‐rate function using a simplified dynamic rupture model. First, we performed dynamic rupture modeling of the 2019 Mw 7.1 Ridgecrest, California, earthquake, to analyze the effects of depth‐dependent stress and material friction on slip rate. Then, we used our modeling results to guid
NGA-East Ground-Motion Characterization model part I: Summary of products and model development
In this article, we present an overview of the research project NGA-East, Next Generation Attenuation for Central and Eastern North America (CENA), and summarize the key methodology and products. The project was tasked with developing a new ground motion characterization (GMC) model for CENA. The final NGA-East GMC model includes a set of 17 median ground motion models (GMMs) for peak ground accel
NGA-East ground-motion characterization model Part II: Implementation and hazard implications
As a companion article to Goulet et al., we describe implementation of the NGA-East ground motion characterization (GMC) model in probabilistic seismic hazard analysis (PSHA) for sites in the Central and Eastern United States (CEUS). We present extensions to the EPRI/DOE/NRC seismic source characterization (SSC) model for the CEUS needed for full implementation of NGA-East. Comparisons are present
Ground motions in urban Los Angeles from the 2019 Ridgecrest earthquake sequence
We study ground-motion response in urban Los Angeles during the two largest events (M7.1 and M6.4) of the 2019 Ridgecrest earthquake sequence using recordings from multiple regional seismic networks as well as a subset of 350 stations from the much denser Community Seismic Network. In the first part of our study, we examine the observed response spectral (pseudo) accelerations for a selection of p
Regional calibration of hybrid ground‐motion simulations in moderate seismicity areas: Application to the Upper Rhine Graben
This study presents the coupling of the spectral decomposition results for anelastic attenuation, stress drop, and site effects with the Graves‐Pitarka (GP) hybrid ground‐motion simulation methodology, as implemented on the Southern California Earthquake Center (SCEC) broadband platform (BBP). It is targeted to applications in the Upper Rhine graben (URG), which is among the seismically active are
Tall building performance-based seismic design using SCEC broadband platform site-specific ground motion simulations
The scarcity of strong ground motion records presents a challenge for making reliable performance assessments of tall buildings whose seismic design is controlled by large-magnitude and close-distance earthquakes. This challenge can be addressed using broadband ground-motion simulation methods to generate records with site-specific characteristics of large-magnitude events. In this paper, simulate
Shallow basin structure and attenuation are key to predicting long shaking duration in Los Angeles Basin
Ground motions in the Los Angeles Basin during large earthquakes are modulated by earthquake ruptures, path effects into the basin, basin effects, and local site response. We analyzed the direct effect of shallow basin structures on shaking duration at a period of 2–10 s in the Los Angeles region through modeling small magnitude, shallow, and deep earthquake pairs. The source depth modulates the b
The 1933 Long Beach Earthquake (California, USA): Ground motions and rupture scenario
We present a synoptic analysis of the ground motions from the 11 March 1933 Mw 6.4 Long Beach, California, earthquake, the largest known earthquake within the central Los Angeles Basin region. Our inferred shaking intensity pattern supports the association of the earthquake with the Newport-Inglewood fault; it further illuminates the concentration of severe damage in the town of Compton, where acc
Hybrid broadband ground motion simulation validation of small magnitude earthquakes in Canterbury, New Zealand
Ground motion simulation validation is an important and necessary task toward establishing the efficacy of physics-based ground motion simulations for seismic hazard analysis and earthquake engineering applications. This article presents a comprehensive validation of the commonly used Graves and Pitarka hybrid broadband ground motion simulation methodology with a recently developed three-dimension
Kinematic rupture modeling of ground motion from the M7 Kumamoto, Japan earthquake
We analyzed a kinematic earthquake rupture generator that combines the randomized spatial field approach of Graves and Pitarka (Bull Seismol Soc Am 106:2136–2153, 2016) (GP2016) with the multiple asperity characterization approach of Irikura and Miyake (Pure Appl Geophys 168:85–104, 2011) (IM2011, also known as Irikura recipe). The rupture generator uses a multi-scale hybrid approach that incorpor
Validating ground-motion simulations on rough faults in complex 3D media
We utilize a two-step process to validate 0-4 Hz ground motion simulations using the 1989 Loma Prieta earthquake. In the first step we run multiple realizations using the Graves and Pitarka hybrid method as implemented on the SCEC Broadband Simulation Platform and compare these with near-fault (R < 40 km) recorded motions. A total of 648 rupture scenarios are examined and from these results we s
Science and Products
- Publications
Filter Total Items: 40
Validating predicted site response in sedimentary basins from 3D ground motion simulations
We introduce procedures to validate site response in sedimentary basins as predicted using ground motion simulations. These procedures aim to isolate contributions of site response to computed intensity measures relative to those from seismic source and path effects. In one of the validation procedures, simulated motions are analyzed in the same manner as earthquake recordings to derive non-ergodiRefinements to the Graves–Pitarka kinematic rupture generator, including a dynamically consistent slip‐rate function, applied to the 2019 Mw 7.1 Ridgecrest earthquake
The main objective of this study is to develop physics‐based constraints on the spatiotemporal variation of the slip‐rate function using a simplified dynamic rupture model. First, we performed dynamic rupture modeling of the 2019 Mw 7.1 Ridgecrest, California, earthquake, to analyze the effects of depth‐dependent stress and material friction on slip rate. Then, we used our modeling results to guidNGA-East Ground-Motion Characterization model part I: Summary of products and model development
In this article, we present an overview of the research project NGA-East, Next Generation Attenuation for Central and Eastern North America (CENA), and summarize the key methodology and products. The project was tasked with developing a new ground motion characterization (GMC) model for CENA. The final NGA-East GMC model includes a set of 17 median ground motion models (GMMs) for peak ground accelNGA-East ground-motion characterization model Part II: Implementation and hazard implications
As a companion article to Goulet et al., we describe implementation of the NGA-East ground motion characterization (GMC) model in probabilistic seismic hazard analysis (PSHA) for sites in the Central and Eastern United States (CEUS). We present extensions to the EPRI/DOE/NRC seismic source characterization (SSC) model for the CEUS needed for full implementation of NGA-East. Comparisons are presentGround motions in urban Los Angeles from the 2019 Ridgecrest earthquake sequence
We study ground-motion response in urban Los Angeles during the two largest events (M7.1 and M6.4) of the 2019 Ridgecrest earthquake sequence using recordings from multiple regional seismic networks as well as a subset of 350 stations from the much denser Community Seismic Network. In the first part of our study, we examine the observed response spectral (pseudo) accelerations for a selection of pRegional calibration of hybrid ground‐motion simulations in moderate seismicity areas: Application to the Upper Rhine Graben
This study presents the coupling of the spectral decomposition results for anelastic attenuation, stress drop, and site effects with the Graves‐Pitarka (GP) hybrid ground‐motion simulation methodology, as implemented on the Southern California Earthquake Center (SCEC) broadband platform (BBP). It is targeted to applications in the Upper Rhine graben (URG), which is among the seismically active areTall building performance-based seismic design using SCEC broadband platform site-specific ground motion simulations
The scarcity of strong ground motion records presents a challenge for making reliable performance assessments of tall buildings whose seismic design is controlled by large-magnitude and close-distance earthquakes. This challenge can be addressed using broadband ground-motion simulation methods to generate records with site-specific characteristics of large-magnitude events. In this paper, simulateShallow basin structure and attenuation are key to predicting long shaking duration in Los Angeles Basin
Ground motions in the Los Angeles Basin during large earthquakes are modulated by earthquake ruptures, path effects into the basin, basin effects, and local site response. We analyzed the direct effect of shallow basin structures on shaking duration at a period of 2–10 s in the Los Angeles region through modeling small magnitude, shallow, and deep earthquake pairs. The source depth modulates the bThe 1933 Long Beach Earthquake (California, USA): Ground motions and rupture scenario
We present a synoptic analysis of the ground motions from the 11 March 1933 Mw 6.4 Long Beach, California, earthquake, the largest known earthquake within the central Los Angeles Basin region. Our inferred shaking intensity pattern supports the association of the earthquake with the Newport-Inglewood fault; it further illuminates the concentration of severe damage in the town of Compton, where accHybrid broadband ground motion simulation validation of small magnitude earthquakes in Canterbury, New Zealand
Ground motion simulation validation is an important and necessary task toward establishing the efficacy of physics-based ground motion simulations for seismic hazard analysis and earthquake engineering applications. This article presents a comprehensive validation of the commonly used Graves and Pitarka hybrid broadband ground motion simulation methodology with a recently developed three-dimensionKinematic rupture modeling of ground motion from the M7 Kumamoto, Japan earthquake
We analyzed a kinematic earthquake rupture generator that combines the randomized spatial field approach of Graves and Pitarka (Bull Seismol Soc Am 106:2136–2153, 2016) (GP2016) with the multiple asperity characterization approach of Irikura and Miyake (Pure Appl Geophys 168:85–104, 2011) (IM2011, also known as Irikura recipe). The rupture generator uses a multi-scale hybrid approach that incorporValidating ground-motion simulations on rough faults in complex 3D media
We utilize a two-step process to validate 0-4 Hz ground motion simulations using the 1989 Loma Prieta earthquake. In the first step we run multiple realizations using the Graves and Pitarka hybrid method as implemented on the SCEC Broadband Simulation Platform and compare these with near-fault (R < 40 km) recorded motions. A total of 648 rupture scenarios are examined and from these results we s