Susan E. Hough
Susan Hough is a scientist in the Earthquake Hazards Program.
Science and Products
Filter Total Items: 127
Which earthquake accounts matter? Which earthquake accounts matter?
Earthquake observations contributed by human observers provide an invaluable source of information to investigate both historical and modern earthquakes. Commonly, the observers whose eyewitness accounts are available to scientists are a self‐selected minority of those who experience a given earthquake. As such these may not be representative of the overall population that experienced...
Authors
Susan E. Hough, Stacey S. Martin
The normal faulting 2020 Mw5.8 Lone Pine, Eastern California earthquake sequence The normal faulting 2020 Mw5.8 Lone Pine, Eastern California earthquake sequence
The 2020 Mw 5.8 Lone Pine earthquake, the largest earthquake on the Owens Valley fault zone, eastern California, since the nineteenth century, ruptured an extensional stepover in that fault. Owens Valley separates two normal‐faulting regimes, the western margin of the Great basin and the eastern margin of the Sierra Nevada, forming a complex seismotectonic zone, and a possible nascent...
Authors
Egill Hauksson, Brian J. Olsen, Alex R. Grant, Jennifer R Andrews, Angela I. Chung, Susan E. Hough, Hiroo Kanamori, Sara K. McBride, Andrew J. Michael, Morgan T. Page, Zachary E. Ross, Deborah Smith, Sotiris Valkaniotis
Revisiting California’s past great earthquakes and long-term earthquake rate Revisiting California’s past great earthquakes and long-term earthquake rate
In this study, we revisit the three largest historical earthquakes in California—the 1857 Fort Tejon, 1872 Owens Valley, and 1906 San Francisco earthquakes—to review their published moment magnitudes, and compare their estimated shaking distributions with predictions using modern ground‐motion models (GMMs) and ground‐motion intensity conversion equations. Currently accepted moment...
Authors
Susan E. Hough, Morgan T. Page, Leah Salditch, Molly M. Gallahue, Madeleine C. Lucas, James S. Neely, Seth Stein
Introduction to the Special Issue on the 2019 Ridgecrest, California, Earthquake Sequence Introduction to the Special Issue on the 2019 Ridgecrest, California, Earthquake Sequence
No abstract available.
Authors
Susan E. Hough, Zachary E. Ross, Timothy E. Dawson
EERI earthquake reconnaissance report: 2019 Ridgecrest earthquake sequence EERI earthquake reconnaissance report: 2019 Ridgecrest earthquake sequence
The Ridgecrest Earthquake Sequence began the morning of 4 July 2019 with an M6.4 earthquake at 10:33 a.m., closely following several small foreshocks. The epicenter of this event was roughly 11 miles (18 km) east-northeast of Ridgecrest (Figure 1) within the Naval Air Weapons Station China Lake (NAWS-CL). Seismic and geologic data established that the M6.4 earthquake occurred primarily...
Authors
EERI Learning from Earthquakes Program, Katherine M. Scharer
California Historical Intensity Mapping Project (CHIMP): A consistently reinterpreted dataset of seismic intensities for the past 162 years and implications for seismic hazard maps California Historical Intensity Mapping Project (CHIMP): A consistently reinterpreted dataset of seismic intensities for the past 162 years and implications for seismic hazard maps
Historical seismic intensity data are useful for myriad reasons, including assessment of the performance of Probabilistic Seismic Hazard Assessment (PSHA) models and corresponding hazard maps by comparing their predictions to a dataset of historically observed intensities in the region. To assess PSHA models for California, a long and consistently interpreted intensity record is...
Authors
Leah Salditch, Molly M. Gallahue, Madeleine C. Lucas, James S. Neely, Susan E. Hough, Seth Stein
Science and Products
Filter Total Items: 127
Which earthquake accounts matter? Which earthquake accounts matter?
Earthquake observations contributed by human observers provide an invaluable source of information to investigate both historical and modern earthquakes. Commonly, the observers whose eyewitness accounts are available to scientists are a self‐selected minority of those who experience a given earthquake. As such these may not be representative of the overall population that experienced...
Authors
Susan E. Hough, Stacey S. Martin
The normal faulting 2020 Mw5.8 Lone Pine, Eastern California earthquake sequence The normal faulting 2020 Mw5.8 Lone Pine, Eastern California earthquake sequence
The 2020 Mw 5.8 Lone Pine earthquake, the largest earthquake on the Owens Valley fault zone, eastern California, since the nineteenth century, ruptured an extensional stepover in that fault. Owens Valley separates two normal‐faulting regimes, the western margin of the Great basin and the eastern margin of the Sierra Nevada, forming a complex seismotectonic zone, and a possible nascent...
Authors
Egill Hauksson, Brian J. Olsen, Alex R. Grant, Jennifer R Andrews, Angela I. Chung, Susan E. Hough, Hiroo Kanamori, Sara K. McBride, Andrew J. Michael, Morgan T. Page, Zachary E. Ross, Deborah Smith, Sotiris Valkaniotis
Revisiting California’s past great earthquakes and long-term earthquake rate Revisiting California’s past great earthquakes and long-term earthquake rate
In this study, we revisit the three largest historical earthquakes in California—the 1857 Fort Tejon, 1872 Owens Valley, and 1906 San Francisco earthquakes—to review their published moment magnitudes, and compare their estimated shaking distributions with predictions using modern ground‐motion models (GMMs) and ground‐motion intensity conversion equations. Currently accepted moment...
Authors
Susan E. Hough, Morgan T. Page, Leah Salditch, Molly M. Gallahue, Madeleine C. Lucas, James S. Neely, Seth Stein
Introduction to the Special Issue on the 2019 Ridgecrest, California, Earthquake Sequence Introduction to the Special Issue on the 2019 Ridgecrest, California, Earthquake Sequence
No abstract available.
Authors
Susan E. Hough, Zachary E. Ross, Timothy E. Dawson
EERI earthquake reconnaissance report: 2019 Ridgecrest earthquake sequence EERI earthquake reconnaissance report: 2019 Ridgecrest earthquake sequence
The Ridgecrest Earthquake Sequence began the morning of 4 July 2019 with an M6.4 earthquake at 10:33 a.m., closely following several small foreshocks. The epicenter of this event was roughly 11 miles (18 km) east-northeast of Ridgecrest (Figure 1) within the Naval Air Weapons Station China Lake (NAWS-CL). Seismic and geologic data established that the M6.4 earthquake occurred primarily...
Authors
EERI Learning from Earthquakes Program, Katherine M. Scharer
California Historical Intensity Mapping Project (CHIMP): A consistently reinterpreted dataset of seismic intensities for the past 162 years and implications for seismic hazard maps California Historical Intensity Mapping Project (CHIMP): A consistently reinterpreted dataset of seismic intensities for the past 162 years and implications for seismic hazard maps
Historical seismic intensity data are useful for myriad reasons, including assessment of the performance of Probabilistic Seismic Hazard Assessment (PSHA) models and corresponding hazard maps by comparing their predictions to a dataset of historically observed intensities in the region. To assess PSHA models for California, a long and consistently interpreted intensity record is...
Authors
Leah Salditch, Molly M. Gallahue, Madeleine C. Lucas, James S. Neely, Susan E. Hough, Seth Stein