In this task we conduct new interpretive studies of the concentration and distribution of trace metals and mercury in coal and other energy materials. Complementary studies of coal combustion products are conducted under Task 8. Together with use of existing USGS databases, we examine the potential for reducing emissions of potentially toxic substances by coal preparation, and by optimizing coal quality parameters such as halogens that enhance mercury capture. We conduct detailed studies of the distribution of mercury and other potential contaminants in U.S. coal resources to evaluate and predict the distribution of these constituents, to determine their potential for reduction, and help support assessment work.
Below are other science projects associated with this project task.
Geochemistry of Energy Fuels Project
Geochemistry of Energy Fuels Task
Molecular Fingerprinting of Energy Materials
Byproducts of Energy Fuels
NORM Byproducts of Energy Resources
Microbial Methanogenesis and Strategies for Enhancements
Maps of Energy Occurrence
Controls on Unconventional Oil and Gas Production
Below are data or web applications associated with this project task.
Geochemical Data for Illinois Basin Coal Samples, 2015-2018 (ver. 1.1, March 2021)
Below are publications associated with this project task.
Topics in coal geochemistry—Short course
Mercury in U.S. coal—Priorities for new U.S. Geological Survey studies
Mercury and trace element distribution in density separates of a South African Highveld (#4) coal: Implications for mercury reduction and preparation of export coal
Mercury and halogens in coal
- Overview
In this task we conduct new interpretive studies of the concentration and distribution of trace metals and mercury in coal and other energy materials. Complementary studies of coal combustion products are conducted under Task 8. Together with use of existing USGS databases, we examine the potential for reducing emissions of potentially toxic substances by coal preparation, and by optimizing coal quality parameters such as halogens that enhance mercury capture. We conduct detailed studies of the distribution of mercury and other potential contaminants in U.S. coal resources to evaluate and predict the distribution of these constituents, to determine their potential for reduction, and help support assessment work.
- Science
Below are other science projects associated with this project task.
Geochemistry of Energy Fuels Project
Since its establishment in 1879, USGS geoscientists have investigated the geochemistry of energy resources. Research conducted in the Geochemistry of Energy Fuels project continues this tradition. Goals include 1) understanding the geologic, geochemical, microbiological, and other factors that control production, quality, and composition of coal, petroleum, and nuclear fuels, and 2) predicting the...Geochemistry of Energy Fuels Task
Geologic and geochemical processes that impact fuel quality, quantity, and availability can be best understood by utilizing a range of approaches, including, but not limited to isotopic signatures, inorganic and organic analyses, and neutron scattering techniques. Current work focuses on using neutron scattering to understand how fluids are stored and flow through tight continuous reservoirs and...Molecular Fingerprinting of Energy Materials
The chemical composition of complex solid organic matter (OM) from sedimentary reservoirs is a key parameter in the generation of hydrocarbon fuels. Vibrational spectroscopies such as Fourier transform infrared (FTIR) and Raman have been widely applied to understand the molecular make-up of these hydrocarbon precursors, as well as provide links to their thermal histories via correlation to proven...Byproducts of Energy Fuels
This task provides detailed information on the use and resource potential of energy by-products, as well as controls on the potential mobility of contaminants resulting from transport, storage, and disposal of these byproducts. Specific topics investigated include 1) transport and fate of organic and inorganic contaminants during storage and disposal of waste coal and coal combustion byproducts...NORM Byproducts of Energy Resources
Naturally Occurring Radioactive Material (NORM) is found in waste produced during the extraction of uranium, phosphate, rare earth elements (REE), coal, oil and gas resources. The focus of this effort is to understand the potential for byproduct recovery of U-235 and Th-232, the fissionable isotopes used to generate nuclear energy from wastes produced during energy resource development. The NORM...Microbial Methanogenesis and Strategies for Enhancements
Microbial (biogenic) natural gas is present in shale, coal and petroleum reservoirs and is estimated to account for 20% of the world’s natural gas resources. We provide hydrological, geochemical and microbial information related to the production of biogenic natural gas and new methods to monitor and enhance the production of this energy resource. Generating microbial methane at a faster rate from...Maps of Energy Occurrence
The primary objective of this task is to produce digital maps coal-bearing areas and related energy sources and materials of the U.S., and internationally. The approach for creating GIS representations of energy sources of the U.S. and the world is to use existing geologic GIS data where possible, supplemented by data on location, rank and age from published maps and reports. Each GIS database...Controls on Unconventional Oil and Gas Production
This scoping task incorporates insights from new approaches to production of unconventional resources and currently focuses on conducting a pilot assessment of biogenic natural gas resources in the Permian Basin. For the pilot assessment to occur, we are developing a database that will host geochemical parameters known to be suggestive of microbial methanogenesis mined to the reservoir level for... - Data
Below are data or web applications associated with this project task.
Geochemical Data for Illinois Basin Coal Samples, 2015-2018 (ver. 1.1, March 2021)
Researchers at the U.S. Geological Survey (USGS) and their collaborators conducted a study of the geochemical properties of coals currently produced for electric power generation in the Illinois Basin in Illinois and Indiana. The study follows from recommendations by an expert panel for the USGS to investigate the distribution and controls of trace constituents such as mercury (Hg) in Illinois Bas - Publications
Below are publications associated with this project task.
Topics in coal geochemistry—Short course
This short course was prepared at the request of Servicio Geológico Colombiano (SGC) as a module for staff training. Prior to the short course, the SGC expressed interest in receiving training in (1) geochemistry and quality of coal; (2) geochemistry of trace elements in coal; (3) mercury and halogens in coal; (4) characterization and cycling of atmospheric mercury; (5) mercury, trace elements, anMercury in U.S. coal—Priorities for new U.S. Geological Survey studies
In 2011, the U.S. Environmental Protection Agency (EPA) introduced emissions standards, known as Mercury and Air Toxics Standards (MATS), for a range of toxic constituents from coal-fired utility power stations and other combustion sources. This report presents the findings of an expert panel convened in September 2014 to assess the role of the U.S. Geological Survey (USGS) in new coal investigatiMercury and trace element distribution in density separates of a South African Highveld (#4) coal: Implications for mercury reduction and preparation of export coal
Eight density separates of Permian Highveld (#4) coal were investigated for partitioning of Hg and trace elements. The separates include float fractions obtained in heavy media having densities of 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, and 2.0 g/cm3, and the sink fraction for 2.0 g/cm3. Bulk analysis of the separates shows strong (R2 ≥ 0.80) positive correlations between pyritic sulfur and mercury, and betMercury and halogens in coal
Apart from mercury itself, coal rank and halogen content are among the most important factors inherent in coal that determine the proportion of mercury captured by conventional controls during coal combustion. This chapter reviews how mercury in coal occurs, gives available concentration data for mercury in U.S. and international commercial coals, and provides an overview of the natural variation