We are researching the subsurface groundwater flow systems in Yellowstone and the relation of these systems to understanding the regional movement of water in a volcanic center. New geophysical data will be integrated with existing data sets from hyperspectral data from Yellowstone's thermal areas and thermal water geochemistry to help define regionally extensive mineral assemblages, the evolution of fluid types that form these mineral assemblages, and to determine trace metals associated with these mineral assemblages.
Science Issue and Relevance
Although Yellowstone's hydrothermal systems are well mapped at the surface, their subsurface groundwater flow systems are almost completely unknown since clear images of Yellowstone groundwater resource locations, geometry, salinity and temperature are lacking in the Park. In addition to a legacy of geochemical work on thermal waters, geophysical mapping, and application of remote sensing techniques to characterize surface geology, the USGS put in a series of drill holes in between 1967 and 1969 to obtain detailed physical and chemical data for the shallow (<330 m depth) hydrothermal system. The core extracted from these drill holes is archived in the USGS Core Research Center in Denver, CO. The Yellowstone core is an invaluable resource for non-destructive research activities, and access to this material has been provided for mineral assemblage characterization using hyperspectral techniques. Preliminary results from a 2001 hyperspectral survey of the Norris Geyser Basin indicate that a wide range of hydrothermal alteration minerals were successfully mapped. Despite the amount of data, there is a major knowledge gap between the surface hydrothermal systems and the deeper magnetic system.
Methodology to Address Issue
We are researching the subsurface groundwater flow systems in Yellowstone and the relation of these systems to understanding the regional movement of water in a volcanic center. New geophysical data will be integrated with existing data sets from hyperspectral data from Yellowstone's thermal areas and thermal water geochemistry to help define regionally extensive mineral assemblages, the evolution of fluid types that form these mineral assemblages, and to determine trace metals associated with these mineral assemblages. Yellowstone's thermal basins include different geologic settings, and each geologic setting is expected to have different mineral assemblages and resultant alteration by hydrothermal fluids. Additionally, there is a broad range of pH and temperatures in regional thermal water that can influence alteration mineral assemblages.
These combined data can be used to develop a more complete understanding of the subsurface structure that influences different thermal water compositions, which will allow for a more nuanced understanding of how mineral assemblages in the Yellowstone subsurface were formed. Our overarching objective is to develop a series of basin-specific characterizations in Yellowstone National Park using a combination of hyperspectral, geophysical, and geochemical data. Selected basins will each be the subject of a focused, interdisciplinary effort, prioritized in part by the planned geophysical surveys and existing hyperspectral data. These data sources will be supported with the synthesis of other data coverages, including surface hydrology, LiDAR, and geology.
Hyperspectral Imaging: We plan to construct a three-dimensional synthesis of hydrothermally altered mineral assemblages using existing hyperspectral surveys and data from the Yellowstone drill core. New spectral data for mineral phases are being used to reinterpret data from remote sensing surveys to provide information on surface mineralogy and geology at the meter to kilometer scale. Core data are being evaluated to obtain mineralogical and geochemical data at the scale of centimeters to nanometers.
Mineral identification is performed on the micrometer scale using a combination of scanning electron microscopy (SEM) and electron microprobe. There are two major phases of rare earth element (REE)-bearing minerals that have been identified, the phosphate mineral monazite and carbonate minerals with a range of rare earth element5 concentrations. Both of these minerals phases have associated halide elements chlorine and fluorine. These halide elements are being monitored by USGS Yellowstone Volcano Observatory personnel to evaluate changes in thermal water activity. Thus, using these mineral phases to understand the fluids that deposited them becomes important for evaluating the history of hydrothermal groundwater interacting with the Lava Creek Tuff in Norris Geyser Basin.
Geophysical Characterization: We are conducting a helicopter electromagnetic and magnetic (HEM) survey in November 2016 in collaboration with scientists from the University of Wyoming and Aarhus University in Denmark. The HEMsurvey will provide the first synoptic subsurface view of Yellowstone's hydrothermal systems, tracking the geophysical signatures of geysers, hot springs, mud pots, steam vents and hydrothermal explosion craters to depths down to hundreds of meters. We hope to distinguish zones of cold fresh water, hot saline water, steam, clay and unaltered rock from one another to understand Yellowstone's myriad hydrothermal systems. The data collected from the November 2016 flight will guide future ground-based geological, hydrological and geophysical studies.
Geochemical Characterization: Yellowstone thermal waters include components of magmatic, or very deep groundwater, and meteoric, or precipitation sources. As groundwater moves through bedrock in the region, the superheated waters dissolve minerals, with the resulting water chemistry reflecting the elements that are in the rocks. The geochemical component of the study seeks to identify geologic sources of some of these elements (e.g., rare earth elements - REE) and to distinguish between magmatic and bedrock sources of mercury and other elements that have forms that can occur in volatile, or gaseous forms. This work is being conducted in collaboration with personnel in the USGS Water Mission Area. The water chemistry will be interpreted along with rock chemistry to better understand the interchange between deep, magmatic waters and shallow groundwater flowpaths.
Below are other science projects associated with this project.
Water Chemistry Data for Selected Springs, Geysers, and Streams in Yellowstone National Park, Wyoming, Beginning 2009
Project data releases.
Airborne Electromagnetic Survey Processed Data and Models Data Release, Yellowstone National Park, Wyoming, 2016
Airborne Electromagnetic and Magnetic Survey, Yellowstone National Park, 2016 - Minimally Processed Data
Below are publications associated with this project.
Geophysical imaging of the Yellowstone hydrothermal plumbing system
Multiscale hyperspectral imaging of hydrothermal alteration in Yellowstone National Park, USA
Geological and thermal control of the hydrothermal system in northern Yellowstone Lake: Inferences from high resolution magnetic surveys
Below are news stories associated with this project.
Below are additional partners associated with this project.
- Overview
We are researching the subsurface groundwater flow systems in Yellowstone and the relation of these systems to understanding the regional movement of water in a volcanic center. New geophysical data will be integrated with existing data sets from hyperspectral data from Yellowstone's thermal areas and thermal water geochemistry to help define regionally extensive mineral assemblages, the evolution of fluid types that form these mineral assemblages, and to determine trace metals associated with these mineral assemblages.
Grand Prismatic Spring, Yellowstone National Park.(Credit: JoAnn Holloway, USGS. Public domain.) Science Issue and Relevance
Although Yellowstone's hydrothermal systems are well mapped at the surface, their subsurface groundwater flow systems are almost completely unknown since clear images of Yellowstone groundwater resource locations, geometry, salinity and temperature are lacking in the Park. In addition to a legacy of geochemical work on thermal waters, geophysical mapping, and application of remote sensing techniques to characterize surface geology, the USGS put in a series of drill holes in between 1967 and 1969 to obtain detailed physical and chemical data for the shallow (<330 m depth) hydrothermal system. The core extracted from these drill holes is archived in the USGS Core Research Center in Denver, CO. The Yellowstone core is an invaluable resource for non-destructive research activities, and access to this material has been provided for mineral assemblage characterization using hyperspectral techniques. Preliminary results from a 2001 hyperspectral survey of the Norris Geyser Basin indicate that a wide range of hydrothermal alteration minerals were successfully mapped. Despite the amount of data, there is a major knowledge gap between the surface hydrothermal systems and the deeper magnetic system.
Methodology to Address Issue
We are researching the subsurface groundwater flow systems in Yellowstone and the relation of these systems to understanding the regional movement of water in a volcanic center. New geophysical data will be integrated with existing data sets from hyperspectral data from Yellowstone's thermal areas and thermal water geochemistry to help define regionally extensive mineral assemblages, the evolution of fluid types that form these mineral assemblages, and to determine trace metals associated with these mineral assemblages. Yellowstone's thermal basins include different geologic settings, and each geologic setting is expected to have different mineral assemblages and resultant alteration by hydrothermal fluids. Additionally, there is a broad range of pH and temperatures in regional thermal water that can influence alteration mineral assemblages.
These combined data can be used to develop a more complete understanding of the subsurface structure that influences different thermal water compositions, which will allow for a more nuanced understanding of how mineral assemblages in the Yellowstone subsurface were formed. Our overarching objective is to develop a series of basin-specific characterizations in Yellowstone National Park using a combination of hyperspectral, geophysical, and geochemical data. Selected basins will each be the subject of a focused, interdisciplinary effort, prioritized in part by the planned geophysical surveys and existing hyperspectral data. These data sources will be supported with the synthesis of other data coverages, including surface hydrology, LiDAR, and geology.
Hyperspectral Imaging: We plan to construct a three-dimensional synthesis of hydrothermally altered mineral assemblages using existing hyperspectral surveys and data from the Yellowstone drill core. New spectral data for mineral phases are being used to reinterpret data from remote sensing surveys to provide information on surface mineralogy and geology at the meter to kilometer scale. Core data are being evaluated to obtain mineralogical and geochemical data at the scale of centimeters to nanometers.
Hyperspectral imaging is being used to detect rare earth elements (REE) including neodium (Nd) in Yellowstone drill hole core on the mm to cm scale. Image (A) is a true-color composite from the visible/near-infrared (VNIR) camera collected at 0.16 mm per pixel for drill hole Y-12 from Norris Geyser Basin. Image (B) shows areas with detected REE absorption features in red. The plot (C) shows an example spectrum from an area with REE absorption features, arrows indicating absorption features used in the spectral feature analysis method that was applied to detect REEs. (Public domain.) The photo shows Raymond Kokaly (USGS research geophysicist) operating a HySpex™ imaging spectrometer to collect hyperspectral images of a section of porcelain basin, part of Norris geyser basin, in Yellowstone National Park. USGS is conducting hyperspectral imaging in Yellowstone National Park to improve our understanding of the geologic and biologic processes occurring in the park. These activities will help to understand microbial and mineral variations across the surface that indicate past hydrothermal activity, the current flow of hot water through the rock, and will be used to identify changes in geologic activity in the future. The photo shows Todd Hoefen (USGS geophysicist) operating a HySpex™ imaging spectrometer to collect hyperspectral images of a section of the canyon wall at Grand Canyon of the Yellowstone in Yellowstone National Park. USGS is conducting hyperspectral imaging in Yellowstone National Park to improve our understanding of the geologic processes occurring in the park. These activities will help to understand mineral variations across the surface that indicate past hydrothermal activity, the current flow of hot water through the rock, and will be used to identify changes in geologic activity in the future. Mineral identification is performed on the micrometer scale using a combination of scanning electron microscopy (SEM) and electron microprobe. There are two major phases of rare earth element (REE)-bearing minerals that have been identified, the phosphate mineral monazite and carbonate minerals with a range of rare earth element5 concentrations. Both of these minerals phases have associated halide elements chlorine and fluorine. These halide elements are being monitored by USGS Yellowstone Volcano Observatory personnel to evaluate changes in thermal water activity. Thus, using these mineral phases to understand the fluids that deposited them becomes important for evaluating the history of hydrothermal groundwater interacting with the Lava Creek Tuff in Norris Geyser Basin.
Left: Monazite grains with rare earth elements lanthenum, cerium and neodinium are associated with zirconium, pyrite and potassium feldspar. Right: Rare earth element carbonate replacement of potassium feldspar with associated ilmenite. (Public domain.) Geophysical Characterization: We are conducting a helicopter electromagnetic and magnetic (HEM) survey in November 2016 in collaboration with scientists from the University of Wyoming and Aarhus University in Denmark. The HEMsurvey will provide the first synoptic subsurface view of Yellowstone's hydrothermal systems, tracking the geophysical signatures of geysers, hot springs, mud pots, steam vents and hydrothermal explosion craters to depths down to hundreds of meters. We hope to distinguish zones of cold fresh water, hot saline water, steam, clay and unaltered rock from one another to understand Yellowstone's myriad hydrothermal systems. The data collected from the November 2016 flight will guide future ground-based geological, hydrological and geophysical studies.
Field incubation of samples from Turbulent Pool, Yellowstone National Park, to determine methylation and demethylation rates for mercury, September 2017.(Credit: JoAnn Holloway, USGS. Public domain.) Geochemical Characterization: Yellowstone thermal waters include components of magmatic, or very deep groundwater, and meteoric, or precipitation sources. As groundwater moves through bedrock in the region, the superheated waters dissolve minerals, with the resulting water chemistry reflecting the elements that are in the rocks. The geochemical component of the study seeks to identify geologic sources of some of these elements (e.g., rare earth elements - REE) and to distinguish between magmatic and bedrock sources of mercury and other elements that have forms that can occur in volatile, or gaseous forms. This work is being conducted in collaboration with personnel in the USGS Water Mission Area. The water chemistry will be interpreted along with rock chemistry to better understand the interchange between deep, magmatic waters and shallow groundwater flowpaths.
- Science
Below are other science projects associated with this project.
Water Chemistry Data for Selected Springs, Geysers, and Streams in Yellowstone National Park, Wyoming, Beginning 2009
Results of water analyses conducted on numerous thermal and non-thermal features in Yellowstone National Park beginning in 2009. Water samples were collected and analyzed as part of research investigations on arsenic, iron, nitrogen, and sulfur redox species in hot springs and overflow drainages; the occurrence and distribution of dissolved mercury; and general hydrogeochemistry of hot springs. - Data
Project data releases.
Airborne Electromagnetic Survey Processed Data and Models Data Release, Yellowstone National Park, Wyoming, 2016
Airborne electromagnetic (AEM) and magnetic survey data were collected during November and December 2016 along 4,212 line-kilometers over Yellowstone National Park, Wyoming. The survey was conducted as part of a study of the subsurface geologic structure and geothermal and groundwater resources of Yellowstone National Park. The survey was designed to image the subsurface plumbing of Yellowstone'sAirborne Electromagnetic and Magnetic Survey, Yellowstone National Park, 2016 - Minimally Processed Data
Airborne electromagnetic (AEM) and magnetic survey data were collected during November and December 2016 along 4,212 line-kilometers over Yellowstone National Park, Wyoming. The survey was conducted as part of a study of the subsurface geologic structure and geothermal and groundwater resources of Yellowstone National Park. The survey was designed to image the subsurface plumbing of Yellowstone's - Publications
Below are publications associated with this project.
Geophysical imaging of the Yellowstone hydrothermal plumbing system
The nature of Yellowstone National Park’s plumbing system linking deep thermal fluids to its legendary thermal features is virtually unknown. The prevailing concepts of Yellowstone hydrology and chemistry are that fluids reside in reservoirs with unknown geometries, flow laterally from distal sources and emerge at the edges of lava flows. Here we present a high-resolution synoptic view of pathwaysAuthorsCarol A. Finn, Paul A. Bedrosian, W. Steven Holbrook, Esben Auken, Benjamin R. Bloss, Kayla (Jade) J CrosbieMultiscale hyperspectral imaging of hydrothermal alteration in Yellowstone National Park, USA
Imaging spectroscopy (hyperspectral imaging) data have mainly been used to map surface materials covering relatively small areas from airborne sensors over the past 20+ years. As part of the U.S. Geological Survey Integrated hyperspectral, geophysical and geochemical studies of Yellowstone National Park hydrothermal systems project, we have collected multiscale imaging spectrometer data includingAuthorsTodd M. Hoefen, Raymond F. Kokaly, Keith Eric Livo, John Michael Meyer, JoAnn HollowayGeological and thermal control of the hydrothermal system in northern Yellowstone Lake: Inferences from high resolution magnetic surveys
A multiscale magnetic survey of the northern basin of Yellowstone Lake was undertaken in 2016 as part of the Hydrothermal Dynamics of Yellowstone Lake Project (HD‐YLAKE)—a broad research effort to characterize the cause‐and‐effect relationships between geologic and environmental processes and hydrothermal activity on the lake floor. The magnetic survey includes lake surface, regional aeromagnetic,AuthorsClaire Bouligand, Maurice A. Tivey, Carol A. Finn, Lisa A Morgan, W. C. Pat Shanks, Robert A. Sohn - News
Below are news stories associated with this project.
- Partners
Below are additional partners associated with this project.