John Wesley Powell Center for Analysis and Synthesis
All Working Groups
Related Content
A digital crust to advance continental‐scale modeling of subsurface fluid flow in climate, crustal process, and Earth system models
Fluid circulation in the Earth’s crust plays an essential role in surface, near surface, and crustal dynamics. Near the surface, soil water and groundwater interact with each other and with rivers, lakes and wetlands, affecting weathering, soil formation, ecosystem evolution and biogeochemical cycles. Further down (1km), fluid flow affects diagenesis, hydrocarbon maturation and migration, ore...
A global synthesis of land-surface fluxes under natural and human-altered watersheds using the Budyko framework
Global hydroclimatic conditions have been significantly altered, over the past century, by anthropogenic influences that arise from warming global climate and also from local/regional anthropogenic disturbances. There has been never been an effort that has systematically analyzed how the spatio-temporal variability of land-surface fluxes vary in natural and human-altered watersheds globally....
Accounting for U.S. ecosystem services at national and subnational scales
Ecosystem services - the benefits that nature provides to society and the economy - are gaining increasing traction worldwide as governments and the private sector use them to monitor integrated environmental and economic trends. When they are well understood and managed, ecosystems can provide these long-term benefits to people - such as clean air and water, flood control, crop pollination,...
Advancing understanding of ecosystem responses to climate change with warming experiments: what we have learned and what is unknown?
Advancing our mechanistic understanding of ecosystem responses to climate change is critical to improve ecological theories, develop predictive models to simulate ecosystem processes, and inform sound policies to manage ecosystems and human activities. Manipulation of temperature in the field, or the “ecosystem warming experiment,” has proved to be a powerful tool to understand ecosystem...
Animal Migration and Spatial Subsidies: Establishing a Framework for Conservation Markets
Migratory species may provide more ecosystem goods and services to humans in certain parts of their range than others. These areas may or may not coincide with the locations of habitat on which the species is most dependent for its continued population viability. This situation can present significant policy challenges, as locations that most support a given species may be in effect...
Broader view of North American climate over the past two millennia: Synthesizing paleoclimate records from diverse archives
Regional- to continental-scale paleoclimate syntheses of temperature and hydroclimate in North America are essential for understanding long-term spatiotemporal variability in climate, and for properly assessing risk on decadal and longer timescales. However, existing syntheses rely almost exclusively on tree-ring records, which are known to underestimate low-frequency variability and rarely...
Characterizing a link in the terrestrial carbon cycle: a global overview of individual tree mass growth
Forests sequester the majority of the terrestrial biosphere’s carbon and are key components of the global carbon cycle, potentially contributing substantial feedbacks to ongoing climatic changes. It is therefore remarkable that no consensus yet exists about the fundamental nature of tree mass growth (and thus carbon sequestration rate). Specifically, does tree mass growth rate increase,...
Characterizing global variability in groundwater arsenic
Groundwater contaminated with naturally occurring arsenic is a widespread problem affecting many alluvial and deltaic aquifer systems throughout the world. The human health toll from consuming groundwater with high levels of arsenic is staggering in its proportions. Furthermore, the use of arsenic contaminated groundwater for irrigation is observed to result in diminished crop yields and thus...
Characterizing landscape genomics and reconstructing pathways to plant ecological specialization and speciation
This proposal brings together biologists and geoscientists to evaluate the evolution of stress tolerance and adaptation to extreme environments in plants. Stress tolerance has been studied mainly from a physiological perspective using laboratory and field experiments. In contrast, this project will take a combined environmental and evolutionary perspective using national public databases and a...
Circumpolar assessment of ecological mismatch between avian herbivores and plant phenology
The timing of breeding is constrained in Arctic ecosystems and small temporal differences in when individuals breed can have large effects on fitness. Arctic ecosystems are generally warming more rapidly than other ecosystems which, for migratory species, can cause an imbalance, or mismatch, between when they have evolved to breed versus when it is optimal to breed environmentally. Geese are...
Climate change and ecohydrology in temperate dryland ecosystems: a global assessment
Water cycling and availability exert dominant control over ecological processes and the sustainability of ecosystem services in water - limited ecosystems. Consequently, dryland ecosystems have the potential to be dramatically impacted by hydrologic alterations emerging from global change, notably increasing temperature and altered precipitation patterns. In addition, the possibility of...
Completing the dryland puzzle: creating a predictive framework for biological soil crust function and response to climate change
Drylands are integral to the Earth system and the present and future of human society. Drylands encompass more than 40% of the terrestrial landmass and support 34% of the world’s human population. Biocrusts are the “living skin” of Earth’s drylands, sometimes dominating the ground cover and figuring prominently in ecosystem structure and function. Biocrusts are a biological aggregate of...
Continental-scale overview of stream primary productivity, its links to water quality, and consequences for aquatic carbon biogeochemistry
Streams and rivers have a limited spatial extent, but are increasingly recognized as key components of regional biogeochemical cycles. The collective metabolic processing of organisms, known as ecosystem metabolism, is centrally important to nutrient cycling and carbon fluxes in these environments, but is poorly integrated into emerging biogeochemical concepts. This line of inquiry lags behind...
Dam removal: synthesis of ecological and physical responses
Dam decommissioning is rapidly emerging as an important river restoration strategy in the U.S., with several major removals recently completed or in progress. But few studies have evaluated the far-reaching consequences of these significant environmental perturbations, especially those resulting from removals of large (>10-15 m tall) structures during the last decade. In particular,...
Developing the next generation of USGS resource assessments
Resource assessments constitute a key part of the USGS mission, and represent a crucial contribution toward Department of the Interior (DOI) and broader Federal objectives. Current USGS energy and mineral assessment methods evaluate total technically recoverable resources (energy) or economically exploitable materials (minerals); the fiscal year 2010 budget for this work is $82M. To help...
Distribution of Fibrous Erionite in the United States and Implications For Human Health
Fibrous erionite, a zeolite mineral, has been designated as a human carcinogen by the World Health Organization and is believed to be the cause of extraordinarily high rates of malignant mesothelioma and other asbestos - related diseases in several villages in Central Turkey. A recent study by the University of Hawaii in collaboration with the U. S. Environmental Protection Agency in Dunn...
Elucidating mechanisms underlying amphibian declines in North America using hierarchical spatial models
Amphibian populations are declining globally at unprecedented rates but statistically rigorous identification of mechanisms is lacking. Identification of reasons underlying large-scale declines is imperative to plan and implement effective conservation efforts. Most research on amphibian population decline has focused on local populations and local factors. However, the ubiquity of declines...
Evidence for shifts in plant species diversity along N deposition gradients: a first synthesis for the United States
The impacts of nitrogen (N) deposition on plant diversity loss have been well documented across N deposition gradients in Europe, but much less so in the U.S. Published N fertilizer studies suggest losses will occur in the US, but many of these were done at levels of N input that were higher than modeled and measured N deposition, and higher than presumed N critical loads. The recent...
Exploiting high-resolution topography for advancing the understanding of mass and energy transfer across landscapes: Opportunities, challenges, and needs
One of the grand challenges of Earth Surface Science and Natural Resource Management lies in the prediction of mass and energy transfer for large watersheds and landscapes. High resolution topography (lidar) datasets show potential to significantly advance our understanding of hydrologic and geomorphic processes controlling mass and energy transfer because they represent features at the...
Forecasting forest response to N deposition: integrating data from individual plant responses to soil chemistry with a continental-scale gradient analysis
Nitrogen deposition is altering forest dynamics, terrestrial carbon storage, and biodiversity. However, our ability to forecast how different tree species will respond to N deposition, especially key response thresholds, is limited by a lack of synthesis across spatial scales and research approaches. To develop our best understanding of N deposition impact on tree growth and survival, we will...
Future Opportunities in Regional and Global Seismic Network Monitoring and Science
The past decade has seen improvements in computational efficiency, seismic data coverage, and communication technology - driven by societal expectation for timely, accurate information. While aspects of earthquake research have taken advantage of this evolution, the adoption of improvements in earthquake monitoring has not been fully leveraged. In real-time monitoring, earthquakes are...
Global Croplands and Their Water Use for Food Security in the Twenty-first Century
Global climate change is putting unprecedented pressure on global croplands and their water use, vital for ensuring future food security for the world's rapidly expanding human population. The end of the green green revolution (productivity per unit of land) era has meant declining global per capita agricultural production requiring immediate policy responses to safeguard food security amidst...
Global Evaluation of the Impacts of Storms on freshwater Habitat and Structure of phytoplankton Assemblages (GEISHA)
Climate change is expected to cause more intense and frequent extreme weather events, but we only have a basic understanding of how these events might alter freshwater systems. Storms are likely to impact lake systems through delivery of sediments from watersheds and mixing of the water column, both of which could have important consequences for phytoplankton. Phytoplankton are the base of the...
Hydraulic Fracturing and Water Resources: An Assessment of the Potential Effects of Shale Gas Development on Water Resources in the United States
Shale gas is a key source of onshore domestic energy for the United States and production of this resource is increasing rapidly. Development and extraction of shale gas requires hydraulic fracturing, which entails horizontal drilling, perforation of steel casing and cement grout using explosive charges, and expansion of fractures using fluids under high pressure. Concern over potential...
Improved hydrologic forecasting through synthesis of critical storage components and timescales across watersheds worldwide
Models that predict the flow of rivers and streams are critically important for planning flood control, hydropower, and reservoir operations, as well as for management of fish and wildlife populations. As temperatures and precipitation regimes change globally, the need to improve and develop these models for a wider spatial coverage and higher spatial fidelity becomes more imperative....
Integrating GRACE Satellite and Ground-based Estimates of Groundwater Storage Changes
Groundwater storage depletion is a critical issue for many of the major aquifers in the U.S., particularly during intense droughts. The GRACE (Gravity Recovery and Climate Experiment) satellites launched in 2002, with sensors designed to measure changes in the Earth’s gravitational field at large spatial scales (≥ ~200,000 km2). These changes are primarily driven by changes in water storage on...
Integrating modeling and empirical approaches to improve predictions of tropical forest responses to global warming
Tropical forests contain > 50% of the world’s known species (Heywood 1995), 55% of global forest biomass (Pan et al. 2011), and exchange more carbon (C), water and energy with the atmosphere than any other ecosystem type (e.g., Saugier et al. 2001). Despite their importance, there is more uncertainty associated with predictions of how tropical forests will respond to warming than for any...
Joint USGS - GEM Group on Global Probabilistic Modeling of Earthquake Recurrence Rates and Maximum Magnitudes
Despite the best monitoring networks, the highest rate of earthquakes and the longest continuous recorded history in the world, this year’s M=9.0 Tohoku, Japan, earthquake was completely unforeseen. The Japanese had expected no larger than a M=8 quake in the Japan trench, 1/30 th the size of the Tohoku temblor. This year also saw the devastating M=6.3 Christchurch, New Zealand earthquake and...
Linking environmental and public health data to evaluate health effects of arsenic exposure from domestic and public supply wells
Everyone needs clean drinking water in order to thrive. The US EPA and public water purveyors in the US work together in adherence with the Safe Drinking Water Act to make water safe for public consumption. The recent media coverage of lead in public drinking water supplies in Flint, Michigan, and schools in many cities with aging infrastructure throughout the US has raised public awareness of...
Local-scale ecosystem resilience amid global-scale ocean change: the coral reef example
Coral reefs are massive, wave resistant structures found throughout the tropics, where they have long attracted attention for their beauty, ecological importance, and rich biological diversity. However, in recent years attention to these systems has focused on their downturn in health and the potential that they effectively could disappear within a century. Yet while many coral reefs have...
Margin-wide geological and geophysical synthesis to understand the recurrence and hazards of great subduction zone earthquakes in Cascadia
The Cascadia Subduction Zone, located in the U.S. Pacific Northwest and southwestern British Columbia, has hosted magnitude ≥8.0 megathrust earthquakes in the geologic past, a future earthquake is imminent, and the potential impacts could cripple the region. Subduction zone earthquakes represent some of the most devastating natural hazards on Earth. Despite substantial knowledge gained from...
Mercury cycling, bioaccumulation, and risk across western North America: a landscape scale synthesis linking long-term datasets
Mercury (Hg) is a serious environmental problem that is impacting ecological and human health on a global scale. However, local and regional processes are largely responsible for producing methylmercury, which drives ecological risk. This is particularly true in western North America where the combination of diverse landscapes, habitat types, climates, and Hg sources may disproportionally...
Modeling species response to environmental change: development of integrated, scalable Bayesian models of population persistence
Estimating species response to environmental change is a key challenge for ecologists and a core mission of the USGS. Effective forecasting of species response requires models that are detailed enough to capture critical processes and at the same time general enough to allow broad application. This tradeoff is difficult to reconcile with most existing methods. We propose to extend and combine...
Next Generation of Ecological Indicators: Defining Which Microbial Properties Matter Most to Ecosystem Function and How to Measure Them
While it is widely recognized that microorganisms are intimately linked with every biogeochemical cycle in all ecosystems, it is not clear how and when microbial dynamics constrain ecosystem processes. As a result, it is know clear how to apply the value of increasingly detailed characterization of microbial properties to our understanding of ecosystem ecology. Several recent papers have...
NEON Workshop: Harmonizing eco-informatics approaches to facilitate data integration
There is a wealth of biodiversity and environmental data that can provide the basis for addressing global scale questions of societal concern. However, our ability to access and integrate this data is hampered by the lack of standardized languages and systems to make this information accessible through the Internet. New tools (e.g. ontologies, standards, integration tools, unique identifiers)...
NEON Workshop: Operationalizing Ecological Forecasts
Ecosystems are changing worldwide and critical decisions that affect ecosystem health and sustainability are being made every day. As ecologists, we have a responsibility to ensure that these decisions are made with access to the best available science. However, to bring this idea into practice, ecology needs to make a substantial leap forward towards becoming a more predictive science....
North American Analysis and Synthesis on the Connectivity of "Geographically Isolated Wetlands" to Downstream Waters
Geographically Isolated Wetlands (GIWs) occur along gradients of hydrologic and ecological connectivity and isolation, even within wetland types (e.g., forested, emergent marshes) and functional classes (e.g., ephemeral systems, permanent systems, etc.). Within a given watershed, the relative positions of wetlands and open-waters along these gradients influence the type and magnitude of their...
Novel multi‐scale synthesis of nitrogen fixation rates and drivers across the terrestrial biosphere
Biological nitrogen fixation (BNF) is a critical biogeochemical process that converts inert atmospheric N2 gas into biologically usable forms of the essential nutrient nitrogen. A variety of free-living and symbiotic organisms carry out BNF, and in most regions worldwide, BNF is the largest source of nitrogen that fuels terrestrial ecosystems. As a result, BNF has far reaching effects on...
Operational Earthquake Forecasting – Implementing a Real-Time System for California
It is well know that every earthquake can spawn others (e.g., as aftershocks), and that such triggered events can be large and damaging, as recently demonstrated by L’Aquila, Italy and Christchurch, New Zealand earthquakes. In spite of being an explicit USGS strategic-action priority (http://pubs.usgs.gov/of/2012/1088; page 32), the USGS...
Optimizing satellite resources for the global assessment and mitigation of volcanic hazards
A vast number of the world’s volcanoes are unmonitored by ground-based sensors, yet constitute an important hazard to nearby residents and infrastructure, as well as air travel and the global economy. Satellite data provide a cost-effective means of tracking activity at such volcanoes. Unfortunately, satellite acquisitions are not optimized for application to volcano hazards, in part because...
PlioMIP (Pliocene Model Intercomparison Project) Strategy, Communications and Synthesis for the IPCC Fifth Assessment Report (IPCC AR5)
USGS PRISM (Pliocene Research, Interpretation and Synoptic Mapping) Project global data sets of Pliocene conditions, which form the most comprehensive global reconstruction for any warm period prior to the recent past, are used to drive numerical climate model simulations designed to explore the impact of climate forcings and feedbacks during the Pliocene. The Pliocene world provides an...
Potential Impacts of Prospective Climate Change on Groundwater Recharge in the Western United States
Groundwater withdrawals in the western US are a critical component of the water resources strategy for the region. Climate change already may be substantially altering recharge into groundwater systems; however, the quantity and direction (increase or decrease) of changes are relatively unknown as most climate change assessments have focused on surface water systems. We propose to conduct a...
Predicting the next high-impact insect invasion: Elucidating traits and factors determining the risk of introduced herbivorous insects on North American native plants
Non-native insect invasions increasingly cause widespread ecological and economic damage in natural and agricultural ecosystems. Non-native insects specialized for feeding on specific plant groups are particularly problematic as they can potentially eliminate an entire genus of native plant species across a wide area. For example, emerald ash borer has killed hundreds of millions of ash trees...
River Corridor hot spots for biogeochemical processing: a continental scale synthesis
Rivers are the veins of the landscape, providing environmental benefits that are disproportionately high relative to their aerial extent; shedding flood waters, hosting aquatic ecosystems, transporting solutes and energy-rich materials, and storing and transforming pollutants into less harmful forms. From uplands to the coasts, rivers facilitate key biogeochemical reactions that cumulatively...
System analysis of land use and climate effects on ecosystem services affecting C and N exchanges with the atmosphere and water cycles
Current land use practices have affected ecosystem structure and processes in ways that have degraded delivery of key ecosystem services controlling exchanges of carbon and nitrogen with the atmosphere and surface and groundwater systems. These impacts are observed in the emissions of greenhouse gases (GHG) and N pollution in our nation’s water systems and coastal areas. Improvements in...
Transport of dissolved organic matter by river networks from mountains to the sea: a re-examination of the role of flow across temporal and spatial scales
The transport of dissolved organic matter (DOM) by rivers is an important component of the global carbon cycle, affects ecosystems and water quality, and reflects biogeochemical and hydrological processes in watersheds. Understanding the fundamental relationships between discharge and DOM concentration and composition reveals important information about watershed flow paths, soil flushing,...
Tsunami Source Standardization for Hazards Mitigation in the United States
The goal of this Powell Center Working Group is to produce a collection of vetted and standardized earthquake and landslide tsunami sources that can be used to produce the meaningful hazard assessment products required for effective tsunami hazard mitigation and risk reduction. The need for a set of realistic and consistent tsunami sources was identified as a high priority at a 2016 workshop...
Understanding and managing for resilience in the face of global change
Resilience science provides a conceptual framework and methodology for quantitatively assessing the ability of a system to remain in a particular state. Probable non-linear ecological responses to global change, including climate change, require a clear framework for understanding and managing resilience. However, much of the resilience research to date has been qualitative in nature, and...
Understanding Fluid Injection Induced Seismicity
Fluid injection induced seismicity has been reported since the 1960s. There are currently more than 150,000 injection wells associated with oil and gas production in 34 states in the conterminous US. Pore pressure disturbance caused by injection is generally considered the culprit for injection induced seismicity, but, not all injection causes seismicity. It is not well understood what...
Water availability for ungauged rivers: an integrative, multi-model approach to estimate water availability at ungauged rivers across the United States
There has been increasing attention placed on the need for water availability information at ungauged locations, particularly related to balancing human and ecological needs for water. Critical to assessing water availability is the necessity for daily streamflow time series; however, most of the rivers in the United States are ungauged. This proposal leverages over $1M currently allocated to...
Wetland fluxnet synthesis for methane: understanding and predicting methane fluxes at daily to interannual timescales
Wetlands provide many important ecosystem services, including wildlife habitat, water purification, flood protection, and carbon metabolism. Our ability to manage these services and predict the long-term health of wetlands is strongly linked to their carbon fluxes, of which methane (CH4) is a key component. Natural wetlands emit approximately 30% of global CH4 emissions, as their waterlogged...
What lies below? Improving quantification and prediction of soil carbon storage, stability, and susceptibility to disturbance.
Soils are a vast reservoir of organic carbon (C), rendering the fate of soil C an important control on the global climate system. Widespread changes in soil C storage capacity present a potentially strong feedback to global change. Yet, a comprehensive understanding of how soil C will respond to climate and/or land use disturbance remains illusive, resulting in major uncertainties in global...
Visualizing the Invisible: Causes, Consequences, Changes, and Management of Streamflow Depletion Across the U.S.
Streamflow is declining in many parts of the United States (US) due to factors including groundwater pumping, land use change, and climate change. Streamflow depletion, a reduction in groundwater discharge to a stream due to human activities such as pumping and/or land use change, tends to evolve slowly and can be entirely invisible for many years to decades. This is because streamflow...
Reanalyzing and Predicting U.S. Water Use using Economic History and Forecast Data; an experiment in short-range national hydro-economic data synthesis
Water in the United States is used for myriad activities on a daily basis, such as for food (irrigation, aquaculture, livestock), energy (thermoelectric power or hydropower generation), and public water supply for domestic, commercial or industrial purposes. Yet, we lack an national accounting of how and where water is used on a temporal scale more frequent than every 5 years, and a spatial...
Capture-recapture meets big data: integrating statistical classification with ecological models of species abundance and occurrence
Advances in new technologies such as remote cameras, noninvasive genetics and bioacoustics provide massive quantities of electronic data. Much work has been done on automated (“machine learning”) methods of classification which produce “sample class designations” (e.g., identification of species or individuals) that are regarded as observed data in ecological models. However, these “data” are...
Analyses of contaminant effects in freshwater systems: synthesizing abiotic and biotic stream datasets for long-term ecological research
Fresh water is arguably the most valuable resource on the planet, but human activities threaten freshwater ecosystems. For example, use of synthetic chemicals, such as pesticides, road salts, and nutrients, has led to the ubiquitous contamination of aquatic systems, jeopardizing the integrity of ecological communities. Given the importance biodiversity plays in maintaining ecosystem health and...
Integrating ecological forecasting methods to improve applications for natural resource management: An invasive species example
Projecting the effects of climate change on plant and animal species distributions and abundance is critical to successful long‐term conservation and restoration efforts. There have been significant recent advances made in the areas of: (1) climate forecasts; (2) habitat niche modeling; (3) mechanistic modeling; and (4) observation techniques and networks. However, projections of biological...