Skip to main content
U.S. flag

An official website of the United States government

John Wesley Powell Center for Analysis and Synthesis

Offering the opportunity for emergent knowledge in Earth system science through collaborative analysis and synthesis.

News

link

Powell Center Working Groups - Class of 2022

link

Fall 2021/Spring 2022 Webinars Highlighting Long-term Ecological Research Synthesis Efforts

link

Powell Center Working Group Featured in NEON Observatory Blog

Publications

Possibility for reverse zoonotic transmission of SARS-CoV-2 to free-ranging wildlife: A case study of bats

The COVID-19 pandemic highlights the substantial public health, economic, and societal consequences of virus spillover from a wildlife reservoir. Widespread human transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also presents a new set of challenges when considering viral spillover from people to naïve wildlife and other animal populations. The establishment of new wild

Towards a predictive framework for biocrust mediation of plant performance: A meta‐analysis

Understanding the importance of biotic interactions in driving the distribution and abundance of species is a central goal of plant ecology. Early vascular plants likely colonized land occupied by biocrusts — photoautotrophic, surface‐dwelling soil communities comprised of cyanobacteria, bryophytes, lichens and fungi — suggesting biotic interactions between biocrusts and plants have been at play f

Science

A global synthesis of multi-year drought effects on terrestrial ecosystems

Drought impacts on terrestrial ecosystems have increased globally in the 21st century, and droughts are expected to become more frequent, extreme, and spatially extensive in the future. Historical site-based observations are inadequate to predict how future extreme water deficits will affect the global terrestrial surface, because future droughts and their impacts may be more extreme than they hav
link

A global synthesis of multi-year drought effects on terrestrial ecosystems

Drought impacts on terrestrial ecosystems have increased globally in the 21st century, and droughts are expected to become more frequent, extreme, and spatially extensive in the future. Historical site-based observations are inadequate to predict how future extreme water deficits will affect the global terrestrial surface, because future droughts and their impacts may be more extreme than they hav
Learn More

Developing and Implementing an International Macroseismic Scale (IMS) for Earthquake Engineering, Earthquake Science, and Rapid Damage Assessment

The USGS “Did You Feel It” (DYFI) is an extremely popular way for members of the public to contribute to earthquake science and earthquake response. DYFI has been in operation for nearly two decades (1999-2019) in the U.S., and for nearly 15 years globally. During that period the amount of data collected is astounding: Over 5 million individual DYFI intensity reports—spanning all magnitude and dis...
link

Developing and Implementing an International Macroseismic Scale (IMS) for Earthquake Engineering, Earthquake Science, and Rapid Damage Assessment

The USGS “Did You Feel It” (DYFI) is an extremely popular way for members of the public to contribute to earthquake science and earthquake response. DYFI has been in operation for nearly two decades (1999-2019) in the U.S., and for nearly 15 years globally. During that period the amount of data collected is astounding: Over 5 million individual DYFI intensity reports—spanning all magnitude and dis...
Learn More

Forecasting Mosquito Phenology in a Shifting Climate: Synthesizing Continental-scale Monitoring Data

Climate change is expected to have significant effects on the phenology of vectors of arthropod-borne diseases, particularly mosquitoes. However, forecasting the direction and magnitude of future phenological shifts requires a more detailed understanding of the climate drivers of mosquito phenology. Addressing this knowledge gap is particularly salient for mosquitoes, as they have the potential to
link

Forecasting Mosquito Phenology in a Shifting Climate: Synthesizing Continental-scale Monitoring Data

Climate change is expected to have significant effects on the phenology of vectors of arthropod-borne diseases, particularly mosquitoes. However, forecasting the direction and magnitude of future phenological shifts requires a more detailed understanding of the climate drivers of mosquito phenology. Addressing this knowledge gap is particularly salient for mosquitoes, as they have the potential to
Learn More