Skip to main content
U.S. flag

An official website of the United States government

Extreme gradient boosting machine learning models, suspended sediment, bedload, streamflow, and geospatial data, Minnesota, 2007-2019

August 11, 2022

A series of machine learning (ML) models were developed for Minnesota. The ML models were trained and tested using suspended sediment, bedload, streamflow, and geospatial data to predicted suspended sediment and bedload. Suspended sediment, bedload, and streamflow data were collected during water years 2007 through 2019. The ML models were used to improve understanding of sediment transport processes and increase accuracy of estimating sediment and loads for streams and rivers across Minnesota. The contents of this data release include README files, input files, output files, and source code (R software version 3.6.1) needed to reproduce the ML models and results in the associated article in Hydrological Processes (https://doi.org/10.1002/hyp.14648). [...]

Publication Year 2022
Title Extreme gradient boosting machine learning models, suspended sediment, bedload, streamflow, and geospatial data, Minnesota, 2007-2019
DOI 10.5066/P9VOPSEJ
Authors John (William) Lund, Joel T Groten
Product Type Data Release
Record Source USGS Asset Identifier Service (AIS)
USGS Organization Upper Midwest Water Science Center
Rights This work is marked with CC0 1.0 Universal
Was this page helpful?