Skip to main content
U.S. flag

An official website of the United States government

Upper Midwest Water Science Center

Our USGS Upper Midwest Water Science Center priority is to continue the important work of the Department of the Interior and the USGS, while also maintaining the health and safety of our employees and community.  Based on guidance from the White House, the CDC, and state and local authorities, we are shifting our operations to a virtual mode and have minimal staffing

News

link

Using sensor technology to develop a recreational contact warning tool for the Grand River, Grand Rapids, MI

link

New study highlights correlations among cyanobacteria and understudied toxins in recurring blooms

link

Media Alert: Low-flying Helicopter Will Survey Southern Wisconsin for Geologic, Water Studies

Publications

Loss of street tree canopy increases stormwater runoff

Urban forests have largely been overlooked for the role they play in reducing stormwater runoff volume by using hydrologic processes such as interception (rainfall intercepted by tree canopy), evapotranspiration (the transfer of water from vegetation into the atmosphere) and infiltration (percolation of rainwater into the Earth’s soil). Early research into the effects of trees on urban stormwater

Green infrastructure in the Great Lakes—Assessment of performance, barriers, and unintended consequences

The Great Lakes Basin covers around 536,393 square kilometers, and the Great Lakes hold more than 5,400 cubic miles of water, accounting for more than 20 percent of the world’s fresh surface water supply. The Great Lakes provide a source of drinking water to tens of millions of people in Canada and the United States and support one of the most diverse ecosystems in the world. Increasing urbanizati

Science

Assessing stormwater reduction through green infrastructure: RecoveryPark (Detroit, Mich.)

The effectiveness of green infrastructure (including urban land conversion and bioswales) at reducing stormwater runoff is being assessed at RecoveryPark, a redeveloped urban farm in Detroit, Michigan. This study will monitor pre- and post-construction storm-sewer flow, groundwater levels, precipitation, and potential evapotranspiration (ET) to evaluate stormwater-volume reduction in response to...
link

Assessing stormwater reduction through green infrastructure: RecoveryPark (Detroit, Mich.)

The effectiveness of green infrastructure (including urban land conversion and bioswales) at reducing stormwater runoff is being assessed at RecoveryPark, a redeveloped urban farm in Detroit, Michigan. This study will monitor pre- and post-construction storm-sewer flow, groundwater levels, precipitation, and potential evapotranspiration (ET) to evaluate stormwater-volume reduction in response to...
Learn More

Assessing stormwater reduction using green infrastructure: Gary City Hall (Gary, Ind.)

The effectiveness of green infrastructure (rain gardens and decreased impervious surface) at reducing stormwater runoff and capturing dissolved chloride is being assessed at a redevelopment project at Gary City Hall (Gary, Indiana). This study will evaluate pre- and post-construction hydrologic conditions using data collected by monitoring storm-sewer flow, groundwater levels, soil moisture, and...
link

Assessing stormwater reduction using green infrastructure: Gary City Hall (Gary, Ind.)

The effectiveness of green infrastructure (rain gardens and decreased impervious surface) at reducing stormwater runoff and capturing dissolved chloride is being assessed at a redevelopment project at Gary City Hall (Gary, Indiana). This study will evaluate pre- and post-construction hydrologic conditions using data collected by monitoring storm-sewer flow, groundwater levels, soil moisture, and...
Learn More

Monitoring and predicting the impacts of trees on urban stormwater volume reduction

Much has been learned about how effectively individual green infrastructure practices can reduce stormwater volume, however, the role of urban trees in stormwater detention is poorly understood. This study quantified the impact that trees have on stormwater runoff volume.
link

Monitoring and predicting the impacts of trees on urban stormwater volume reduction

Much has been learned about how effectively individual green infrastructure practices can reduce stormwater volume, however, the role of urban trees in stormwater detention is poorly understood. This study quantified the impact that trees have on stormwater runoff volume.
Learn More