Ground-Water Quality and Potential Effects of Individual Sewage Disposal System Effluent on Ground-Water Quality in Park County, Colorado, 2001-2004
In 2000, the U.S. Geological Survey, in cooperation with Park County, Colorado, began a study to evaluate ground-water quality in the various aquifers in Park County that supply water to domestic wells. The focus of this study was to identify and describe the principal natural and human factors that affect ground-water quality. In addition, the potential effects of individual sewage disposal system (ISDS) effluent on ground-water quality were evaluated.
Ground-water samples were collected from domestic water-supply wells from July 2001 through October 2004 in the alluvial, crystalline-rock, sedimentary-rock, and volcanic-rock aquifers to assess general ground-water quality and effects of ISDS's on ground-water quality throughout Park County. Samples were analyzed for physical properties, major ions, nutrients, bacteria, and boron; and selected samples also were analyzed for dissolved organic carbon, human-related (wastewater) compounds, trace elements, radionuclides, and age-dating constituents (tritium and chlorofluorocarbons).
Drinking-water quality is adequate for domestic use throughout Park County with a few exceptions. Only about 3 percent of wells had concentrations of fluoride, nitrate, and (or) uranium that exceeded U.S. Environmental Protection Agency national, primary drinking-water standards. These primary drinking-water standards were exceeded only in wells completed in the crystalline-rock aquifers in eastern Park County. Escherichia coli bacteria were detected in one well near Guffey, and total coliform bacteria were detected in about 11 percent of wells sampled throughout the county. The highest total coliform concentrations were measured southeast of the city of Jefferson and west of Tarryall Reservoir. Secondary drinking-water standards were exceeded more frequently. About 19 percent of wells had concentrations of one or more constituents (pH, chloride, fluoride, sulfate, and dissolved solids) that exceeded secondary drinking-water standards. Currently (2004), there is no federally enforced drinking-water standard for radon in public water-supply systems, but proposed regulations suggest a maximum contaminant level of 300 picocuries per liter (pCi/L) and an alternative maximum contaminant level of 4,000 pCi/L contingent on other mitigating remedial activities to reduce radon levels in indoor air. Radon concentrations in about 91 percent of ground-water samples were greater than or equal to 300 pCi/L, and about 25 percent had radon concentrations greater than or equal to 4,000 pCi/L. Generally, the highest radon concentrations were measured in samples collected from wells completed in the crystalline-rock aquifers.
Analyses of ground-water-quality data indicate that recharge from ISDS effluent has affected some local ground-water systems in Park County. Because roughly 90 percent of domestic water used is assumed to be recharged by ISDS's, detections of human-related (wastewater) compounds in ground water in Park County are not surprising; however, concentrations of constituents associated with ISDS effluent generally are low (concentrations near the laboratory reporting levels). Thirty-eight different organic wastewater compounds were detected in 46 percent of ground-water samples, and the number of compounds detected per sample ranged from 1 to 17 compounds. Samples collected from wells with detections of wastewater compounds also had significantly higher (p-value < 0.05) chloride and boron concentrations than samples from wells with no detections of wastewater compounds.
ISDS density (average subdivision lot size used to estimate ISDS density) was related to ground-water quality in Park County. Chloride and boron concentrations were significantly higher in ground-water samples collected from wells located in areas that had average subdivision lot sizes of less than 1 acre than in areas that had average subdivision lot sizes greater than or equal to 1 acre. For wells completed in the crystalline-
Citation Information
Publication Year | 2007 |
---|---|
Title | Ground-Water Quality and Potential Effects of Individual Sewage Disposal System Effluent on Ground-Water Quality in Park County, Colorado, 2001-2004 |
DOI | 10.3133/sir20075220 |
Authors | Lisa D. Miller, Roderick F. Ortiz |
Publication Type | Report |
Publication Subtype | USGS Numbered Series |
Series Title | Scientific Investigations Report |
Series Number | 2007-5220 |
Index ID | sir20075220 |
Record Source | USGS Publications Warehouse |
USGS Organization | U.S. Geological Survey |