Skip to main content
U.S. flag

An official website of the United States government

November 1, 2016

Desert communities throughout the Southwest are putting water availability at the top of their municipal agendas.

Helping Desert Communities Find Hidden Water

In the 1800s, cowboys, ranchers, and miners quarreled over water in the American Southwest, over where to find it and who could use it. Today, people in the region are faced with even greater concerns. Rapid population growth combined with the impact of longer droughts may present a greater demand for water resources in the future.

However, one area stands out from the rest: the upper Santa Cruz Basin in Arizona has shown a remarkable capacity to store water. The Santa Cruz River area was the site of the first European settlements in the region because of its water availability and lush environment.

What causes the higher water availability in this area?

Population Growth in Nogales, Arizona
Rapid population growth, as shown by new homes in the Nogales, Arizona area, has increased the demand for groundwater in the upper Santa Cruz Basin. Photograph credit: William Page, USGS
Looking Deeper Underground

During the rainy season in southern Arizona, water seeps into the ground and is stored in big, underground bathtubs called aquifers. Groundwater in aquifers can be brought to the surface by natural springs or wells. The aquifers that provide much of the groundwater to the city of Nogales and the surrounding communities are collectively called “the microbasins.” The microbasins are narrow, and scientists originally thought they were shallow—100–150 feet below the surface—because solid bedrock is close to the surface and water cannot pass through it easily.

Could water be leaking beneath the shallow aquifers, making more water available?

Keith Nelson, a hydrologist at the Arizona Department of Water Resources (ADWR) in Phoenix, worked to find the answer. He used a water simulation program and entered data that included the possibility of aquifers deeper than 150 feet beneath the surface. The model produced results closer to the actual conditions.

“Although that was reassuring,” said Nelson, “I was reluctant to consider the findings more than preliminary until I could get field data on whether the rocks in the area would actually let water through to lower levels.”

Cutting Edge 3D Modeling and Integrated Research

Nelson then collaborated with geologist William Page of the U.S. Geological Survey (USGS). After Nelson had explained his dilemma, Page shared results of his studies in the area. Page has worked in the region for many years and collects data about geologic formations and faults to determine how they affect surface water and groundwater flow.

A three-dimensional (3D) geologic model developed by the USGS was one of several techniques used to understand how water flows in the Santa Cruz Basin. The model helped define the geometry and thickness of the basin aquifer system and enabled the viewing of subsurface data interactively in 3D space. This gives scientists the ability to slice through and rotate the modeled geology into various orientations, thereby better understanding the internal complexities of the basin. These types of interactive models are cutting-edge in the scientific community.

Data from Page’s collective geologic studies revealed many areas of fractured sediments throughout the Santa Cruz Basin and numerous deep aquifers, some reaching 2,500 feet below the surface. Where sediments are fractured, channels form, allowing water to flow at deeper levels. The sediments let water through easily and are also porous and store even more water.

3D of the Upper Santa Cruz Basin
USGS video of the 3D model looking at the upper Santa Cruz Basin in Arizona. The top layers (yellow and gold) are the shallow and deep aquifers. The bottom layer (green and red colors) is solid bedrock underneath. The red lines are faults, which play a significant role in controlling groundwater flow through the basin aquifers.
Progress Is Enthusiastically Received

Studies based on data from both the USGS and the ADWR provide insight into how the regional hydrologic system works. Their efforts are enthusiastically received by residents, the City of Nogales, and other regional water users and managers.

“[Page’s] work confirmed our unexpected results that there are deep aquifers beneath the shallow ones in the microbasins,” Nelson commented. “The ADWR will use the results of the new USGS studies to create more effective water management strategies.”

Santa Cruz Basin
Geologists collecting data on a fracture (in foreground) in the Santa Cruz Basin. Photograph credit: William Page, USGS
Line
For More Information

For more information, contact Kevin Gallagher, USGS Associate Director for Core Science Systems, at kgallagher@usgs.gov.

 

Read more stories about USGS science in action.

 

Print Button

 

Get Our News

These items are in the RSS feed format (Really Simple Syndication) based on categories such as topics, locations, and more. You can install and RSS reader browser extension, software, or use a third-party service to receive immediate news updates depending on the feed that you have added. If you click the feed links below, they may look strange because they are simply XML code. An RSS reader can easily read this code and push out a notification to you when something new is posted to our site.

Was this page helpful?