Skip to main content
U.S. flag

An official website of the United States government

Volcano Watch — Scientific community lends a hand to measure Kīlauea's changing shape

August 30, 2018

The USGS Hawaiian Volcano Observatory (HVO) has an extensive network of instruments that helps us monitor how the ground deforms due to magma moving underground. However, we are fortunate that scientific colleagues also pitched in to support our responses to Kīlauea Volcano's lower East Rift Zone (LERZ) eruption and summit collapse.

geophysicist downloads data at a temporary GPS station
A USGS Hawaiian Volcano Observatory geophysicist downloads data at a temporary GPS station provided by UNAVCO, one of the scientific agencies that provided support during Kīlauea Volcano's recent activity. This GPS station was deployed to detect subtle surface deformation at the summit of the volcano.

Here, we describe our deformation monitoring network and highlight how the community of scientists who study ground motion helped increase HVO's monitoring capabilities during Kīlauea's recent events.

The Global Positioning System (GPS) has been used to monitor surface motion on the Island of Hawai‘i since the late 1980s. Several dozen permanent GPS stations are scattered across the island, and all communicate data to HVO via radio links. Each day, an independent solution for the 3-dimensional position of a GPS station is calculated from these data. The accuracy of the GPS station positions is typically better than a centimeter (a fraction of an inch).

In addition to permanent GPS stations, which are affixed to a monument anchored to the ground, HVO also regularly measures the positions of a set of benchmarks using portable installations, also called "campaign GPS." During an eruption, these temporary stations provide extra coverage in important areas.

One challenge of the LERZ eruption, which began in Lower Puna's Leilani Estates subdivision on May 3, 2018, was that it involved a large portion of Kīlauea. Within days of the first fissure opening, all HVO GPS equipment was deployed, but gaps remained in places where ground deformation monitoring was critical.

Fortunately, UNAVCO, the National Science Foundation's geodetic facility, was able to provide additional equipment to expand the area that HVO could monitor. This expanded area included the western side of Kīlauea's south flank, which enabled us to gather more insights on the after-effects of the magnitude-6.9 earthquake that occurred on May 4, 2018.

Additional GPS stations were deployed along Kīlauea's middle East Rift Zone, from Pu‘u ‘Ō‘ō to Heiheiahulu, to measure rift deformation caused by magma draining from the area and migrating to Leilani Estates. Other temporary stations were deployed around Kīlauea caldera to give better constraints on summit deflation and collapse.

Another tool utilized by HVO to measure surface deformation orbits above Earth's surface at a height of over 600 kilometers (about 400 miles)—satellites! Specifically, radar satellites. Interferometric Synthetic Aperture Radar (InSAR) is a technique that uses two satellite radar (SAR) images acquired from about the same point in space at different times. From these images, a map can be produced to show how the Earth's surface has deformed during the time spanned.

The European Space Agency (ESA) operates a two-satellite constellation called Sentinel-1. InSAR data from Sentinel-1 are typically available with a 12-day repeat cycle. However, in response to Kīlauea's eruption and summit collapse events, ESA cut the repeat time in half, and provided InSAR results every six days.

The Cosmo-SkyMed satellite system is operated by the Italian Space Agency (ASI) and consists of four satellites. ASI made sure that all four satellites acquired high-resolution views of Kīlauea's summit throughout the collapse events, with individual InSAR results spanning as little as one day!

The increased frequency of SAR satellite passes was especially valuable for regular updates and broad-scale views of Kīlauea's summit, allowing HVO to monitor subtle surface deformation that might otherwise have gone undetected. The data were also used to produce animations of the summit collapse, which provided both scientists and island residents a birds-eye view of the major changes occurring within Kīlauea caldera.

HVO scientists used the additional equipment and access to satellite data to further our monitoring capabilities and better understand Kīlauea Volcano's extraordinary LERZ and summit activity. We are grateful for the scientific community's support, which was crucial to understanding the evolution of volcanic hazards over the course of the recent unprecedented events.

Volcano Activity Update


At Kīlauea's lower East Rift Zone, no incandescence was visible in the fissure 8 cone and no lava was entering the ocean as of August 30. At the summit of the volcano, seismicity and ground deformation were negligible, and no collapse event has occurred since August 2. However, hazardous conditions remain in both areas. Residents in the lower Puna and Kīlauea summit areas on the Island of Hawai‘i should stay informed and heed Hawai‘i County Civil Defense closures, warnings, and messages (http://www.hawaiicounty.gov/active-alerts). HVO daily status reports are posted at https://volcanoes.usgs.gov/volcanoes/kilauea/status.html.

At Mauna Loa, HVO geophysical monitoring networks indicate that earthquakes and deformation are near background levels, and the USGS Volcano Alert level for the volcano remains at NORMAL.

HVO continues to closely monitor both Kīlauea and Mauna Loa and will report any significant changes on either volcano.

No earthquakes were reported felt in Hawaii this past week.

Get Our News

These items are in the RSS feed format (Really Simple Syndication) based on categories such as topics, locations, and more. You can install and RSS reader browser extension, software, or use a third-party service to receive immediate news updates depending on the feed that you have added. If you click the feed links below, they may look strange because they are simply XML code. An RSS reader can easily read this code and push out a notification to you when something new is posted to our site.