Data
Realtime monitoring, station, and other various seismic data available for download. Access to data products to view and download.
Information on these Data Collections
Information on these Data Collections
The data collections below are data releases associated with research publications by USGS authors. The data listed on the webpage accessed by the button link on the right are not associated with any specific publications. They are instead bodies of data associated with various earthquake monitoring systems.
Filter Total Items: 275
STEPS: Slip Time Earthquake Path Simulations applied to the San Andreas and Toe Jam Hill faults to redefine geologic slip rate uncertainty (Matlab code) STEPS: Slip Time Earthquake Path Simulations applied to the San Andreas and Toe Jam Hill faults to redefine geologic slip rate uncertainty (Matlab code)
Geologic slip rates are a time-averaged measurement of fault displacement calculated over 100s- to 1,000,000-year time scales and are a primary input for probabilistic seismic hazard analyses (PSHA), which forecast expected ground shaking in future earthquakes. Despite their utility for seismic hazard calculations, longer-term geologic slip rates represent a time-averaged measure of the...
Data Release for PGV Data for the 2018 National Seismic Hazard Model for the Conterminous United States Data Release for PGV Data for the 2018 National Seismic Hazard Model for the Conterminous United States
Peak ground velocity (PGV) gridded probabilistic seismic hazard data for the updated 2018 National Seismic Hazard Model (NSHM) for the Conterminous United States (CONUS). PGV hazard curves and ground motions have been calculated on a 0.05 by 0.05 degree grid using the NSHM CONUS 2018 earthquake source model. PGV support has been incorporated into the NSHM using a newly developed PGV...
High-resolution seismic data acquired at six Southern California Seismic Network (SCSN) recording stations in 2017 High-resolution seismic data acquired at six Southern California Seismic Network (SCSN) recording stations in 2017
In August 2017, the U.S. Geological Survey acquired high-resolution P- and S-wave seismic data near six Southern California Seismic Network (SCSN) recording stations in southern California: CI.OLI Olinda; CI.SRN Serrano; CI.MUR Murrieta; CI.LCG La Cienega; CI.RUS Rush; and CI.STC Santa Clara (Figure 1). These strong-motion recording stations are located inside Southern California Edison...
High-resolution seismic data acquired at six seismic network recording stations in San Bernardino County, California in 2019 High-resolution seismic data acquired at six seismic network recording stations in San Bernardino County, California in 2019
In May 2019, the U.S. Geological Survey acquired high resolution P- and S-wave seismic data near six seismic network recording stations in San Bernardino County, California: Southern California Seismic Network CI.CLT Calelectic, CI.MLS Mira Loma, CI.CJM Cajon Mountain and CI.HLN Highland; California Strong Motion Instrumentation Program station CE.23542; and US National Strong-Motion...
Data Release for a 2020 High-Resolution Seismic Survey across Northeastern Edwards Air Force Base, Kern County, California Data Release for a 2020 High-Resolution Seismic Survey across Northeastern Edwards Air Force Base, Kern County, California
In June of 2020, the U.S. Geological Survey conducted a high-resolution seismic survey at Edwards Air Force Base in Kern County, California. Seismic data were acquired using a DTCC SmartSolo 3-component nodal seismometer system ("node"), which continuously recorded at 2000 samples per second. Nodes were deployed 5 meters apart along a southwest-northeast trend to create an approximately...
Data Release for Additional Period and Site Class Data for the 2018 National Seismic Hazard Model for the Conterminous United States (ver. 1.1, February 2020) Data Release for Additional Period and Site Class Data for the 2018 National Seismic Hazard Model for the Conterminous United States (ver. 1.1, February 2020)
The updated 2018 National Seismic Hazard Model includes new ground motion models, aleatory uncertainty, and soil amplification factors for the central and eastern U.S. and incorporates basin depths from local seismic velocity models in four western U.S. (WUS) urban areas. These additions allow us, for the first time, to calculate probabilistic seismic hazard curves for an expanded set of...
Code to access the Central United States Velocity Model, v1.3 Code to access the Central United States Velocity Model, v1.3
We have developed a new three-dimensional seismic velocity model of the central United States (CUSVM) that includes the New Madrid Seismic Zone (NMSZ) and covers parts of Arkansas, Mississippi, Alabama, Illinois, Missouri, Kentucky, and Tennessee (Ramirez Guzman et al, 2012). The model represents a compilation of decades of crustal research consisting of seismic, aeromagnetic, and...
Database for the Central United States Velocity Model, v1.3 Database for the Central United States Velocity Model, v1.3
We have developed a new three-dimensional seismic velocity model of the central United States (CUSVM) that includes the New Madrid Seismic Zone (NMSZ) and covers parts of Arkansas, Mississippi, Alabama, Illinois, Missouri, Kentucky, and Tennessee. The model represents a compilation of decades of crustal research consisting of seismic, aeromagnetic, and gravity profiles; geologic mapping
Data from Theodolite Measurements of Creep Rates on San Francisco Bay Region Faults, California (ver. 2.2, July 2023) Data from Theodolite Measurements of Creep Rates on San Francisco Bay Region Faults, California (ver. 2.2, July 2023)
Note: this data release has been superseded by version 3.0, available here: https://doi.org/10.5066/P17YBOAC. The data comprise an archive of repeated surveyed measurements to monitor surface fault creep (a form of gradual tectonic movement) occurring along active faults in the San Francisco Bay region for use by the scientific research community. Additional description of these data and...
Data for "Serpentinite-rich Gouge in a Creeping Segment of the Bartlett Springs Fault, Northern California: Comparison with SAFOD and Implications for Seismic Hazard" Data for "Serpentinite-rich Gouge in a Creeping Segment of the Bartlett Springs Fault, Northern California: Comparison with SAFOD and Implications for Seismic Hazard"
This report presents the mineral chemistry dataset that was used in a published study of serpentinite-rich gouge from an actively creeping trace of the Bartlett Springs Fault in northern California. The fault gouge consists of porphyroclasts of antigorite serpentinite, talc, chlorite, and tremolite-actinolite in a sheared matrix of the same materials. The compositions of spinels in the
Waveform Data and Metadata used to National Earthquake Information Center Deep-Learning Models Waveform Data and Metadata used to National Earthquake Information Center Deep-Learning Models
These data were used to train the Machine Learning models supporting the USGS software release "NEIC Machine Learning Applications Software" (https://doi.org/10.5066/P9ICQPUR), and its companion publication in Seismological Research Letters "Leveraging Deep Learning in Global 24/7 Real-Time Earthquake Monitoring at the National Earthquake Information Center" (https://doi.org/XXXXX)...
Voice and data telecommunications restoration curves for 15 counties affected by the April 18, 2018, M7.0 HayWired earthquake scenario mainshock Voice and data telecommunications restoration curves for 15 counties affected by the April 18, 2018, M7.0 HayWired earthquake scenario mainshock
These data are a series of telecommunications voice and data restoration percentages for 17 counties affected by the HayWired earthquake scenario, a magnitude 7.0 earthquake occurring on the Hayward Fault on April 18, 2018, with an epicenter in the city of Oakland, CA. These data for telecommunications demand served are derived from residual network capacity based on potential hazard...