Skip to main content
U.S. flag

An official website of the United States government

Aluminum mobility in mildly acidic mine drainage: Interactions between hydrobasaluminite, silica and trace metals from the nano to the meso-scale

April 22, 2019

Aluminum precipitates control the hydrochemistry and mineralogy of a broad variety of environments on Earth (e.g., acid mine drainage, AMD, coastal wetlands, boreal and alpine streams, tropical acid sulfate soils, laterites and bauxites, …). However, the geochemical and mineralogical processes controlling Al (and other associated metals and metalloids) transport and removal in those environments are not fully understood. The geochemical system of Paradise Portal (Colorado, USA) comprises sulfate-rich mildly acidic waters, the hydrochemistry of which is directly controlled by the massive precipitation of hydrobasaluminite Al4(SO4)(OH)10·12-36H2O. Three connected but discernible aluminum precipitation stages were identified and described: 1) nanoparticle formation and size decrease along the creek, 2) hydrobasaluminite neoformation on the riverbed, and 3) precipitate accretion and accumulation on the riverbed leading to Al and Fe banded formations. The co-occurrence of Al and Si in the system was observed, recording significant amounts of Si accompanying the three different components of the system (i.e., nanoparticles and fresh and aged Al-precipitates). Also, abrupt and minor changes in the sedimentary record were described and proposed to be the response of the system to seasonal and interannual changes in AMD chemistry. Concerning the mobility of other metals and metalloids, P, Th, V, W, Ti and B showed a tendency to be preferentially incorporated into hydrobasaluminite, while others like Be, As, Se or Ba tend to remain dissolved in the water.


Publication Year 2019
Title Aluminum mobility in mildly acidic mine drainage: Interactions between hydrobasaluminite, silica and trace metals from the nano to the meso-scale
DOI 10.1016/j.chemgeo.2019.04.013
Authors Manuel A. Caraballo, Richard Wanty, Philip Verplanck, Leonardo Navarro-Valdivia, Carlos Ayora, Michael Hochella
Publication Type Article
Publication Subtype Journal Article
Series Title Chemical Geology
Index ID 70215404
Record Source USGS Publications Warehouse
USGS Organization Geology, Geophysics, and Geochemistry Science Center