Skip to main content
U.S. flag

An official website of the United States government

Assessing contaminant sensitivity of endangered and threatened aquatic species: Part II. chronic toxicity of copper and pentachlorophenol to two endangered species and two surrogate species

January 1, 2005

Early life-stage toxicity tests with copper and pentachlorophenol (PCP) were conducted with two species listed under the United States Endangered Species Act (the endangered fountain darter, Etheostoma fonticola, and the threatened spotfin chub, Cyprinella monacha) and two commonly tested species (fathead minnow, Pimephales promelas, and rainbow trout, Oncorhynchus mykiss). Results were compared using lowest-observed effect concentrations (LOECs) based on statistical hypothesis tests and by point estimates derived by linear interpolation and logistic regression. Sublethal end points, growth (mean individual dry weight) and biomass (total dry weight per replicate) were usually more sensitive than survival. The biomass end point was equally sensitive as growth and had less among-test variation. Effect concentrations based on linear interpolation were less variable than LOECs, which corresponded to effects ranging from 9% to 76% relative to controls and were consistent with thresholds based on logistic regression. Fountain darter was the most sensitive species for both chemicals tested, with effect concentrations for biomass at ??? 11 ??g/L (LOEC and 25% inhibition concentration [IC25]) for copper and at 21 ??g/L (IC25) for PCP, but spotfin chub was no more sensitive than the commonly tested species. Effect concentrations for fountain darter were lower than current chronic water quality criteria for both copper and PCP. Protectiveness of chronic water-quality criteria for threatened and endangered species could be improved by the use of safety factors or by conducting additional chronic toxicity tests with species and chemicals of concern. ?? 2005 Springer Science+Business Media, Inc.

Related Content