Skip to main content
U.S. flag

An official website of the United States government

Assessing the Vulnerability of Public-Supply Wells to Contamination: Central Valley Aquifer System near Modesto, California

June 10, 2009

This fact sheet highlights findings from the vulnerability study of a public-supply well in Modesto, California. The well selected for study pumps on average about 1,600 gallons per minute from the Central Valley aquifer system during peak summer demand. Water samples were collected at the public-supply well and at monitoring wells installed in the Modesto vicinity. Samples from the public-supply wellhead contained the undesirable constituents uranium, nitrate, arsenic, volatile organic compounds (VOCs), and pesticides, although none were present at concentrations exceeding drinking-water standards. Of these contaminants, uranium and nitrate pose the most significant water-quality risk to the public-supply well because human activities have caused concentrations in groundwater to increase over time.

Overall, study findings point to four primary factors that affect the movement and (or) fate of contaminants and the vulnerability of the public-supply well in Modesto: (1) groundwater age (how long ago water entered, or recharged, the aquifer); (2) irrigation and agricultural and municipal pumping that drives contaminants downward into the primary production zone of the aquifer; (3) short-circuiting of contaminated water down the public-supply well during the low-pumping season; and (4) natural geochemical conditions of the aquifer.

A local-scale computer model of groundwater flow and transport to the public-supply well was constructed to simulate long-term nitrate and uranium concentrations reaching the well. With regard to nitrate, two conflicting processes influence concentrations in the area contributing recharge to the well: (1) Beneath land that is being farmed or has recently been farmed (within the last 10 to 20 years), downward-moving irrigation waters contain elevated nitrate concentrations; yet (2) the proportion of agricultural land has decreased and the proportion of urban land has increased since 1960. Urban land use is associated with low nitrate concentrations in recharge (3.1 milligrams per liter). Results of the simulation indicate that nitrate concentrations in the public-supply well peaked in the late 1990s and will decrease slightly from the current level of 5.5 milligrams per liter during the next 100 years. A lag time of 20 to 30 years between peak nitrate concentrations in recharge and peak concentrations in the well is the result of the wide range of ages of water reaching the public-supply well combined with changing nitrogen input concentrations over time. As for uranium, simulation results show that concentrations in the public-supply well will likely approach the Maximum Contaminant Level of 30 micrograms per liter over time; however, it will take more than 100 years because of the contribution of old water at depth in the public-supply well that dilutes uranium concentrations in shallower water entering the well. This allows time to evaluate management strategies and to alter well-construction or pumping strategies to prevent uranium concentrations from exceeding the drinking-water standard.

Publication Year 2009
Title Assessing the Vulnerability of Public-Supply Wells to Contamination: Central Valley Aquifer System near Modesto, California
DOI 10.3133/fs20093036
Authors Martha L. Jagucki, Bryant C. Jurgens, Karen R. Burow, Sandra M. Eberts
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Fact Sheet
Series Number 2009-3036
Index ID fs20093036
Record Source USGS Publications Warehouse
USGS Organization U.S. Geological Survey